Header

UZH-Logo

Maintenance Infos

Convolution quadrature based BEM in acoustics for absorbing boundary conditions


Pölz, Dominik; Sauter, Stefan A; Schanz, Martin (2016). Convolution quadrature based BEM in acoustics for absorbing boundary conditions. Proceedings in Applied Mathematics and Mechanics, 16(1):23-26.

Abstract

In many fields of engineering the acoustic behavior has to be determined, e.g. the sound distribution in a room or the sound radiation into the surrounding. Often, the goal is to obtain a sound pressure field such that disturbing noise is reduced to an acceptable level. In room acoustics, sound absorbing materials are often used to obtain this goal. The mathematical description is done with the wave equation and absorbing boundary conditions. The numerical treatment can be done with Boundary Element methods, where the absorbing boundary results in a Robin boundary condition. This boundary condition connects the Neumann trace with the Dirichlet trace of the time derivative.

Here, an indirect formulation, which uses the single layer potential, is used as basic boundary integral equation. The convolution quadrature method is applied for time discretisation, which allows a simple formulation of the Robin boundary condition in the Laplace domain. Convergence studies with a refinement in space and time show the expected rates. A realistic example for indoor acoustics, the computation of the sound pressure level in a staircase of the University of Zurich, show the suitability of this approach in determining the indoor acoustics. The absorbing boundary condition shows the expected behavior.

Abstract

In many fields of engineering the acoustic behavior has to be determined, e.g. the sound distribution in a room or the sound radiation into the surrounding. Often, the goal is to obtain a sound pressure field such that disturbing noise is reduced to an acceptable level. In room acoustics, sound absorbing materials are often used to obtain this goal. The mathematical description is done with the wave equation and absorbing boundary conditions. The numerical treatment can be done with Boundary Element methods, where the absorbing boundary results in a Robin boundary condition. This boundary condition connects the Neumann trace with the Dirichlet trace of the time derivative.

Here, an indirect formulation, which uses the single layer potential, is used as basic boundary integral equation. The convolution quadrature method is applied for time discretisation, which allows a simple formulation of the Robin boundary condition in the Laplace domain. Convergence studies with a refinement in space and time show the expected rates. A realistic example for indoor acoustics, the computation of the sound pressure level in a staircase of the University of Zurich, show the suitability of this approach in determining the indoor acoustics. The absorbing boundary condition shows the expected behavior.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:October 2016
Deposited On:01 Dec 2016 09:58
Last Modified:02 Jun 2017 20:07
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1617-7061
Publisher DOI:https://doi.org/10.1002/pamm.201610007

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations