Header

UZH-Logo

Maintenance Infos

Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models


Piazzese, Concetta; Carminati, M Chiara; Colombo, Andrea; Krause, Rolf; Potse, Mark; Auricchio, Angelo; Weinert, Lynn; Tamborini, Gloria; Pepi, Mauro; Lang, Roberto M; Caiani, Enrico G (2016). Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models. Journal of Electrocardiology, 49(3):383-391.

Abstract

We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echocardiographic (3DE) LV images, different LV shape models were built by varying the considered phase in the cardiac cycle and the registration procedure employed for surface alignment. Principal component analysis was computed to describe the statistical variability of the SSMs, which were then deformed by applying an active shape model (ASM) approach to segment the LV endocardium in CMR images of 45 patients. Segmentation performance was evaluated by comparing LV volumes derived by ASM segmentation with different SSMs and those obtained by manual tracing, considered as a reference. A high correlation (r(2)>0.92) was found in all cases, with better results when using the SSM models comprising more than one frame of the cardiac cycle.

Abstract

We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echocardiographic (3DE) LV images, different LV shape models were built by varying the considered phase in the cardiac cycle and the registration procedure employed for surface alignment. Principal component analysis was computed to describe the statistical variability of the SSMs, which were then deformed by applying an active shape model (ASM) approach to segment the LV endocardium in CMR images of 45 patients. Segmentation performance was evaluated by comparing LV volumes derived by ASM segmentation with different SSMs and those obtained by manual tracing, considered as a reference. A high correlation (r(2)>0.92) was found in all cases, with better results when using the SSM models comprising more than one frame of the cardiac cycle.

Statistics

Altmetrics

Downloads

1 download since deposited on 08 Dec 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Cardiocentro Ticino
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2016
Deposited On:08 Dec 2016 10:01
Last Modified:18 Dec 2016 06:22
Publisher:Elsevier
ISSN:0022-0736
Publisher DOI:https://doi.org/10.1016/j.jelectrocard.2016.03.017
PubMed ID:27046100

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations