Header

UZH-Logo

Maintenance Infos

Identification of cis- and trans-acting elements regulating calretinin expression in mesothelioma cells


Kresoja-Rakic, Jelena; Kapaklikaya, Esra; Ziltener, Gabriela; Dalcher, Damian; Santoro, Raffaella; Christensen, Brock C; Johnson, Kevin C; Schwaller, Beat; Weder, Walter; Stahel, Rolf A; Felley-Bosco, Emanuela (2016). Identification of cis- and trans-acting elements regulating calretinin expression in mesothelioma cells. OncoTarget, 7(16):21272-21286.

Abstract

Calretinin (CALB2) is a diagnostic marker for epithelioid mesothelioma. It is also a prognostic marker since patients with tumors expressing high calretinin levels have better overall survival. Silencing of calretinin decreases viability of epithelioid mesothelioma cells. Our aim was to elucidate mechanisms regulating calretinin expression in mesothelioma. Analysis of calretinin transcript and protein suggested a control at the mRNA level. Treatment with 5-aza-2'-deoxycytidine and analysis of TCGA data indicated that promoter methylation is not likely to be involved. Therefore, we investigated CALB2 promoter by analyzing ~1kb of genomic sequence surrounding the transcription start site (TSS) + 1 using promoter reporter assay. Deletion analysis of CALB2 proximal promoter showed that sequence spanning the -161/+80bp region sustained transcriptional activity. Site-directed analysis identified important cis-regulatory elements within this -161/+80bp CALB2 promoter. EMSA and ChIP assays confirmed binding of NRF-1 and E2F2 to the CALB2 promoter and siRNA knockdown of NRF-1 led to decreased expression of calretinin. Cell synchronization experiment showed that calretinin expression was cell cycle regulated with a peak of expression at G1/S phase. This study provides the first insight in the regulation of CALB2 expression in mesothelioma cells.

Abstract

Calretinin (CALB2) is a diagnostic marker for epithelioid mesothelioma. It is also a prognostic marker since patients with tumors expressing high calretinin levels have better overall survival. Silencing of calretinin decreases viability of epithelioid mesothelioma cells. Our aim was to elucidate mechanisms regulating calretinin expression in mesothelioma. Analysis of calretinin transcript and protein suggested a control at the mRNA level. Treatment with 5-aza-2'-deoxycytidine and analysis of TCGA data indicated that promoter methylation is not likely to be involved. Therefore, we investigated CALB2 promoter by analyzing ~1kb of genomic sequence surrounding the transcription start site (TSS) + 1 using promoter reporter assay. Deletion analysis of CALB2 proximal promoter showed that sequence spanning the -161/+80bp region sustained transcriptional activity. Site-directed analysis identified important cis-regulatory elements within this -161/+80bp CALB2 promoter. EMSA and ChIP assays confirmed binding of NRF-1 and E2F2 to the CALB2 promoter and siRNA knockdown of NRF-1 led to decreased expression of calretinin. Cell synchronization experiment showed that calretinin expression was cell cycle regulated with a peak of expression at G1/S phase. This study provides the first insight in the regulation of CALB2 expression in mesothelioma cells.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 08 Dec 2016
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease

04 Faculty of Medicine > University Hospital Zurich > Clinic for Oncology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:19 April 2016
Deposited On:08 Dec 2016 15:14
Last Modified:11 Aug 2017 11:05
Publisher:Impact Journals, LLC
ISSN:1949-2553
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.18632/oncotarget.7114
PubMed ID:26848772

Download

Download PDF  'Identification of cis- and trans-acting elements regulating calretinin expression in mesothelioma cells'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)