Header

UZH-Logo

Maintenance Infos

Mitochondrial function controls intestinal epithelial stemness and proliferation


Abstract

Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone, activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation, accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4(+) stem cells. These effects are independent of the MT-UPR-associated transcription factor CHOP. In conclusion, compensatory hyperproliferation of HSP60(+) escaper stem cells suggests paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to be pivotal in the control of the proliferative capacity of the stem cell niche.

Abstract

Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone, activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation, accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4(+) stem cells. These effects are independent of the MT-UPR-associated transcription factor CHOP. In conclusion, compensatory hyperproliferation of HSP60(+) escaper stem cells suggests paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to be pivotal in the control of the proliferative capacity of the stem cell niche.

Statistics

Citations

3 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 12 Dec 2016
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:27 October 2016
Deposited On:12 Dec 2016 07:52
Last Modified:07 Aug 2017 07:40
Publisher:Nature Publishing Group
ISSN:2041-1723
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/ncomms13171
PubMed ID:27786175

Download

Download PDF  'Mitochondrial function controls intestinal epithelial stemness and proliferation'.
Preview
Content: Published Version
Filetype: PDF
Size: 7MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)