Header

UZH-Logo

Maintenance Infos

Decomposition and stabilisation of Norway spruce needle-derived material in Alpine soils using a 13C-labelling approach in the field


Egli, Markus; Hafner, Simon; Derungs, Curdin; Ascher-Jenull, Judith; Camin, Federica; Sartori, Giacomo; Raab, Gerald; Bontempo, Luana; Paolini, Mauro; Ziller, Luca; Bardelli, Tommaso; Petrillo, Marta; Abiven, Samuel (2016). Decomposition and stabilisation of Norway spruce needle-derived material in Alpine soils using a 13C-labelling approach in the field. Biogeochemistry, 131(3):321-338.

Abstract

Only scarce information is available on how organic C is incorporated into the soil during the decay and how (micro) climate influences this process. Therefore, we investigated the effect of exposure and elevation on the organic litter decomposition and C-stabilisation in acidic soils of an Alpine environment. An experiment with artificially 13C labelled Norway spruce needles was carried out at north- and south-exposed sites between 1200 and 2400 m a.s.l. in the Italian Alps using mesocosms. After 1 year, the 13C recoveries of the bulk soil were 18.6% at the northfacing slopes and 31.5% at the south-facing slopes. A density fractionation into a light (LF; B1.6 g cm-3) and a heavy fraction (HF;[1.6 g cm-3) of the soil helped to identify how the applied substrate was stabilised. At the northern slope, 10.5% of the substrate was recovered in the LF and 8.1% in the HF and at the south-facing slope 22.8% in the LF and 8.1% in the HF. The overall 13C recovery was higher at the south-facing sites due to restricted water availability. Although the climate is humid in the whole area, soil moisture availability becomes more important at south-facing sites due to higher evapotranspiration. However, at sites[1700 m a.s.l, the situation changed, as the northern slope had higher recovery rates. At such altitudes, temperature effects are more dominant. This highlights the importance of locally strongly varying edaphic factors when investigating the carbon cycle.

Abstract

Only scarce information is available on how organic C is incorporated into the soil during the decay and how (micro) climate influences this process. Therefore, we investigated the effect of exposure and elevation on the organic litter decomposition and C-stabilisation in acidic soils of an Alpine environment. An experiment with artificially 13C labelled Norway spruce needles was carried out at north- and south-exposed sites between 1200 and 2400 m a.s.l. in the Italian Alps using mesocosms. After 1 year, the 13C recoveries of the bulk soil were 18.6% at the northfacing slopes and 31.5% at the south-facing slopes. A density fractionation into a light (LF; B1.6 g cm-3) and a heavy fraction (HF;[1.6 g cm-3) of the soil helped to identify how the applied substrate was stabilised. At the northern slope, 10.5% of the substrate was recovered in the LF and 8.1% in the HF and at the south-facing slope 22.8% in the LF and 8.1% in the HF. The overall 13C recovery was higher at the south-facing sites due to restricted water availability. Although the climate is humid in the whole area, soil moisture availability becomes more important at south-facing sites due to higher evapotranspiration. However, at sites[1700 m a.s.l, the situation changed, as the northern slope had higher recovery rates. At such altitudes, temperature effects are more dominant. This highlights the importance of locally strongly varying edaphic factors when investigating the carbon cycle.

Statistics

Altmetrics

Downloads

2 downloads since deposited on 13 Dec 2016
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2016
Deposited On:13 Dec 2016 13:53
Last Modified:21 Dec 2016 02:03
Publisher:Springer
ISSN:0168-2563
Publisher DOI:https://doi.org/10.1007/s10533-016-0281-x

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations