Header

UZH-Logo

Maintenance Infos

Network dynamics mediate circadian clock plasticity


Azzi, Abdelhalim; Evans, J A; Leise, T; Myung, J; Takumi, T; Davidson, A J; Brown, Steven A (2017). Network dynamics mediate circadian clock plasticity. Neuron, 93(2):441-450.

Abstract

A circadian clock governs most aspects of mammalian behavior. Although its properties are in part genetically determined, altered light-dark environment can change circadian period length through a mechanism requiring de novo DNA methylation. We show here that this mechanism is mediated not via cell-autonomous clock properties, but rather through altered networking within the suprachiasmatic nuclei (SCN), the circadian “master clock,” which is DNA methylated in region-specific manner. DNA methylation is necessary to temporally reorganize circadian phasing among SCN neurons, which in turn changes the period length of the network as a whole. Interruption of neural communication by inhibiting neuronal firing or by physical cutting suppresses both SCN reorganization and period changes. Mathematical modeling suggests, and experiments confirm, that this SCN reorganization depends upon GABAergic signaling. Our results therefore show that basic circadian clock properties are governed by dynamic interactions among SCN neurons, with neuroadaptations in network function driven by the environment.

Abstract

A circadian clock governs most aspects of mammalian behavior. Although its properties are in part genetically determined, altered light-dark environment can change circadian period length through a mechanism requiring de novo DNA methylation. We show here that this mechanism is mediated not via cell-autonomous clock properties, but rather through altered networking within the suprachiasmatic nuclei (SCN), the circadian “master clock,” which is DNA methylated in region-specific manner. DNA methylation is necessary to temporally reorganize circadian phasing among SCN neurons, which in turn changes the period length of the network as a whole. Interruption of neural communication by inhibiting neuronal firing or by physical cutting suppresses both SCN reorganization and period changes. Mathematical modeling suggests, and experiments confirm, that this SCN reorganization depends upon GABAergic signaling. Our results therefore show that basic circadian clock properties are governed by dynamic interactions among SCN neurons, with neuroadaptations in network function driven by the environment.

Statistics

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 14 Dec 2016
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:18 January 2017
Deposited On:14 Dec 2016 17:10
Last Modified:14 May 2017 05:36
Publisher:Cell Press (Elsevier)
ISSN:0896-6273
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuron.2016.12.022
PubMed ID:28065650

Download