Header

UZH-Logo

Maintenance Infos

On the role of non-spherical cavities in short length-scale density fluctuations in water - Zurich Open Repository and Archive


Sosso, Gabriele Cesare; Caravati, Sebastiano; Rotskoff, Grant; Vaikuntanathan, Suriyanarayanan; Hassanali, Ali A (2017). On the role of non-spherical cavities in short length-scale density fluctuations in water. Journal of Physical Chemistry. A, 121(1):370-380.

Abstract

Density fluctuations in liquid water are at the heart of numerous phenomena associated with hydrophobic effects such as protein folding and the interaction between biomolecules. One of the most fundamental processes in this regard is the solvation of hydrophobic solutes in water. The vast majority of theoretical and numerical studies examine density fluctuations at the short length scale focusing exclusively on spherical cavities. In this work, we use both first-principles and classical molecular dynamics simulations to demonstrate that density fluctuations in liquid water can deviate significantly from the canonical spherical shapes. We show that regions of empty space are frequently characterized by exotic, highly asymmetric shapes that can be quite delocalized over the hydrogen bond network. Interestingly, density fluctuations of these shapes are characterized by Gaussian statistics with larger fluctuations. An important consequence of this is that the work required to create non spherical cavities can be substantially smaller than that of spheres. This feature is also qualitatively captured by the Lum-Chandler-Weeks theory. The scaling behavior of the free energy as a function of the volume at short length scales is qualitatively different for the nonspherical entities. We also demonstrate that nonspherical density fluctuations are important for accommodating the hydrophobic amino acid alanine and are thus likely to have significant implications when it comes to solvating highly asymmetrical species such as alkanes, polymers, or biomolecules.

Abstract

Density fluctuations in liquid water are at the heart of numerous phenomena associated with hydrophobic effects such as protein folding and the interaction between biomolecules. One of the most fundamental processes in this regard is the solvation of hydrophobic solutes in water. The vast majority of theoretical and numerical studies examine density fluctuations at the short length scale focusing exclusively on spherical cavities. In this work, we use both first-principles and classical molecular dynamics simulations to demonstrate that density fluctuations in liquid water can deviate significantly from the canonical spherical shapes. We show that regions of empty space are frequently characterized by exotic, highly asymmetric shapes that can be quite delocalized over the hydrogen bond network. Interestingly, density fluctuations of these shapes are characterized by Gaussian statistics with larger fluctuations. An important consequence of this is that the work required to create non spherical cavities can be substantially smaller than that of spheres. This feature is also qualitatively captured by the Lum-Chandler-Weeks theory. The scaling behavior of the free energy as a function of the volume at short length scales is qualitatively different for the nonspherical entities. We also demonstrate that nonspherical density fluctuations are important for accommodating the hydrophobic amino acid alanine and are thus likely to have significant implications when it comes to solvating highly asymmetrical species such as alkanes, polymers, or biomolecules.

Altmetrics

Downloads

0 downloads since deposited on 26 Jan 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2017
Deposited On:26 Jan 2017 09:00
Last Modified:26 Jan 2017 09:00
Publisher:American Chemical Society (ACS)
ISSN:1089-5639
Publisher DOI:https://doi.org/10.1021/acs.jpca.6b11168
PubMed ID:27935707

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations