Header

UZH-Logo

Maintenance Infos

Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge


Hofmann-Lehmann, Regina; Vlasak, J; Rasmussen, R A; Smith, B A; Baba, T W; Liska, V; Ferrantelli, F; Montefiori, D C; McClure, H M; Anderson, D C; Bernacky, B J; Rizvi, T A; Schmidt, R; Hill, L R; Keeling, M E; Katinger, H; Stiegler, G; Cavacini, L A; Posner, M R; Chou, T C; Andersen, J; Ruprecht, R M (2001). Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge. Journal of Virology, 75(16):7470-7480.

Abstract

To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351-357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu(+) challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200-206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu(+) challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encoding env of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4(+) T-cell decline. In contrast, all control animals had dramatic drops in their CD4(+) T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1.

Abstract

To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351-357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu(+) challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200-206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu(+) challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encoding env of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4(+) T-cell decline. In contrast, all control animals had dramatic drops in their CD4(+) T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1.

Statistics

Citations

131 citations in Web of Science®
135 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 21 Dec 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:August 2001
Deposited On:21 Dec 2016 12:54
Last Modified:08 Dec 2017 21:34
Publisher:American Society for Microbiology
ISSN:0022-538X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JVI.75.16.7470-7480.2001
PubMed ID:11462019
Other Identification Number:PMCID: PMC114982

Download

Download PDF  'Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher