Header

UZH-Logo

Maintenance Infos

Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: comparison of one- versus two-enzyme systems


Hofmann-Lehmann, Regina; Swenerton, Ryan K; Liska, Vladimir; Leutenegger, Christian M; Lutz, Hans; McClure, Harold M; Ruprecht, Ruth M (2000). Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: comparison of one- versus two-enzyme systems. AIDS Research and Human Retroviruses, 16(13):1247-1257.

Abstract

Plasma viral RNA load is a key parameter in disease progression of lentiviral infections. To measure simian immunodeficiency virus (SIV) RNA loads, we have established a quantitative one-tube assay based on TaqMan chemistry. This real-time reverse transcriptase-polymerase chain reaction (RT-PCR) has advantages compared with previous methods, such as higher sensitivity, shorter time consumption, and low risk of cross-contamination. The sensitivity of the assay was optimized by comparing different enzyme systems. The one-enzyme protocol using rTth DNA polymerase was superior to two assays employing two enzymes. It detects 100% of the samples containing four copies of RNA transcript and allows quantification of viral RNA loads over an 8-log unit dynamic range. As few as 50 copies per milliliter of plasma can be detected within RNA extracted from 140 microl of plasma. This is especially relevant in studies employing neonatal macaques, from which only small volumes of blood can be sampled, and in studies in which low viral RNA loads are expected. Because of the use of rTth DNA polymerase, DNA contamination can be avoided by carryover prevention with uracil N-glycosylase (UNG). We demonstrate that for optimization of real-time PCR sensitivity, not only concentrations of different reagents but also different enzyme systems must be evaluated. Our assay facilitates and enhances the quantification of plasma RNA loads, a critical parameter for many studies, including evaluations of vaccine candidates or antiviral regimens.

Abstract

Plasma viral RNA load is a key parameter in disease progression of lentiviral infections. To measure simian immunodeficiency virus (SIV) RNA loads, we have established a quantitative one-tube assay based on TaqMan chemistry. This real-time reverse transcriptase-polymerase chain reaction (RT-PCR) has advantages compared with previous methods, such as higher sensitivity, shorter time consumption, and low risk of cross-contamination. The sensitivity of the assay was optimized by comparing different enzyme systems. The one-enzyme protocol using rTth DNA polymerase was superior to two assays employing two enzymes. It detects 100% of the samples containing four copies of RNA transcript and allows quantification of viral RNA loads over an 8-log unit dynamic range. As few as 50 copies per milliliter of plasma can be detected within RNA extracted from 140 microl of plasma. This is especially relevant in studies employing neonatal macaques, from which only small volumes of blood can be sampled, and in studies in which low viral RNA loads are expected. Because of the use of rTth DNA polymerase, DNA contamination can be avoided by carryover prevention with uracil N-glycosylase (UNG). We demonstrate that for optimization of real-time PCR sensitivity, not only concentrations of different reagents but also different enzyme systems must be evaluated. Our assay facilitates and enhances the quantification of plasma RNA loads, a critical parameter for many studies, including evaluations of vaccine candidates or antiviral regimens.

Statistics

Citations

130 citations in Web of Science®
134 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 Dec 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Date:1 September 2000
Deposited On:22 Dec 2016 13:41
Last Modified:22 Dec 2016 13:41
Publisher:Mary Ann Liebert
ISSN:0889-2229
Publisher DOI:https://doi.org/10.1089/08892220050117014
PubMed ID:10957722

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 259kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations