Header

UZH-Logo

Maintenance Infos

Immunization-induced decrease of the CD4+:CD8+ ratio in cats experimentally infected with feline immunodeficiency virus


Hofmann-Lehmann, Regina; von Beust, B; Niederer, E; Condrau, M A; Fierz, W; Aubert, Andre; Ackley, C D; Cooper, M D; Tompkins, M B; Lutz, Hans (1992). Immunization-induced decrease of the CD4+:CD8+ ratio in cats experimentally infected with feline immunodeficiency virus. Veterinary Immunology and Immunopathology, 35(1-2):199-214.

Abstract

In a previous experiment a group of 15 specified pathogen free (SPF) cats were experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV). A group of 15 SPF cats served as FIV negative controls. Nine cats of each group were vaccinated with a recombinant feline leukemia virus (FeLV) vaccine, six cats in each group with a placebo vaccine. All vaccinated cats developed high antibody titers to FeLV and were protected against subsequent FeLV challenge infection. In both control groups five of six cats became persistently infected with FeLV. Unexpectedly, the primary immune response to the vaccine antigen was significantly higher in the FIV positive group than in the FIV negative. The secondary response was stronger in the FIV negative cats. The goal of the present investigation was to further study the immune response in these 30 cats. They were immunized twice with the synthetic peptide L-tyrosine-L-glutamic acid-poly(DL-alanine)-poly(L-lysine) (TGAL) 21 days apart. Blood samples were collected on four occasions during the immunization process. They were tested for antibodies to TGAL, complete blood cell counts and CD4+, CD8+ and pan-T-lymphocyte counts. The following observations were made: (1) in contrast to the FeLV vaccine experiment, the primary immune response to TGAL was not significantly stronger in the FIV positive cats when tested by enzyme-linked immunosorbent assay (2). The absolute size of the CD4+ lymphocyte population was distinctly smaller in the FIV positive than in the FIV negative cats. The lowest CD4+ values were found in the dually FIV/FeLV infected cats. (3) A population of CD8+ lymphocytes was identified that was characterized by a distinctly weaker fluorescence. The size of this population increased in FIV positive and decreased in FIV negative cats during the TGAL immunization experiment. (4) The CD4+:CD8+ ratio increased in FIV negative cats during TGAL immunization from 1.9 to 2.3. In contrast, in FIV positive animals the CD4+:CD8+ ratio decreased significantly from 1.9 to 1.3 during the same period. From these and earlier data it was concluded that in short-term FIV infection the immune response to T-cell dependent antigens may be increased over that of the controls. Immune suppression develops gradually with duration of the infection. The significant drop of the CD4+:CD8+ ratio over a 5 week immunization period suggests that antigenic stimulation may accelerate the development of immune suppression in FIV positive cats. If this is a general feature, FIV infection may provide a particularly interesting model for studying the pathogenesis of AIDS.

Abstract

In a previous experiment a group of 15 specified pathogen free (SPF) cats were experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV). A group of 15 SPF cats served as FIV negative controls. Nine cats of each group were vaccinated with a recombinant feline leukemia virus (FeLV) vaccine, six cats in each group with a placebo vaccine. All vaccinated cats developed high antibody titers to FeLV and were protected against subsequent FeLV challenge infection. In both control groups five of six cats became persistently infected with FeLV. Unexpectedly, the primary immune response to the vaccine antigen was significantly higher in the FIV positive group than in the FIV negative. The secondary response was stronger in the FIV negative cats. The goal of the present investigation was to further study the immune response in these 30 cats. They were immunized twice with the synthetic peptide L-tyrosine-L-glutamic acid-poly(DL-alanine)-poly(L-lysine) (TGAL) 21 days apart. Blood samples were collected on four occasions during the immunization process. They were tested for antibodies to TGAL, complete blood cell counts and CD4+, CD8+ and pan-T-lymphocyte counts. The following observations were made: (1) in contrast to the FeLV vaccine experiment, the primary immune response to TGAL was not significantly stronger in the FIV positive cats when tested by enzyme-linked immunosorbent assay (2). The absolute size of the CD4+ lymphocyte population was distinctly smaller in the FIV positive than in the FIV negative cats. The lowest CD4+ values were found in the dually FIV/FeLV infected cats. (3) A population of CD8+ lymphocytes was identified that was characterized by a distinctly weaker fluorescence. The size of this population increased in FIV positive and decreased in FIV negative cats during the TGAL immunization experiment. (4) The CD4+:CD8+ ratio increased in FIV negative cats during TGAL immunization from 1.9 to 2.3. In contrast, in FIV positive animals the CD4+:CD8+ ratio decreased significantly from 1.9 to 1.3 during the same period. From these and earlier data it was concluded that in short-term FIV infection the immune response to T-cell dependent antigens may be increased over that of the controls. Immune suppression develops gradually with duration of the infection. The significant drop of the CD4+:CD8+ ratio over a 5 week immunization period suggests that antigenic stimulation may accelerate the development of immune suppression in FIV positive cats. If this is a general feature, FIV infection may provide a particularly interesting model for studying the pathogenesis of AIDS.

Statistics

Citations

34 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 Dec 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Date:December 1992
Deposited On:22 Dec 2016 14:27
Last Modified:25 Dec 2016 06:21
Publisher:Elsevier
ISSN:0165-2427
Publisher DOI:https://doi.org/10.1016/0165-2427(92)90132-A
PubMed ID:1363009

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 890kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations