Header

UZH-Logo

Maintenance Infos

Normal patellofemoral kinematic patterns during daily activities in dogs


Moore, Erica J; Kim, Stanley E; Banks, Scott A; Pozzi, Antonio; Coggeshall, Jason D; Jones, Stephen C (2016). Normal patellofemoral kinematic patterns during daily activities in dogs. BMC Veterinary Research, 12(1):262.

Abstract

Background: Patellar abnormalities are a common cause of pain and lameness in dogs; however, in vivo the relative motion between the femur and patella in dogs is not well described. The objective of this study was to define normal in vivo sagittal plane patellofemoral kinematics in three axes of motion using non-invasive methods. We hypothesized patellofemoral alignment in the sagittal plane would tightly correlate with the femorotibial flexion angle. Six healthy dogs without orthopedic disease underwent computed tomography (CT) of their hind limbs to create 3-D models of the patella and femur. Normal stifle joint motion was captured via flat-panel imaging while each dog performed a series of routine activities, including sitting, walking, and trotting. The 3-D models of the patella and femur were digitally superimposed over the radiographic images with shape-matching software and the precise movement of the patella relative to the femur was calculated.
Results: As the femorotibial joint flexed, the patellofemoral joint also flexed and the patella moved caudally and distally within the femoral trochlea during each activity. Patellar flexion and distal translation during walk and sit were linearly coupled with the femorotibial flexion angle. Offset was evident while trotting, where patella poses were significantly different between early and late swing phase (p ≤ 0.003). Patellar flexion ranged from 51 to 6° while trotting. The largest flexion angle (92°) occurred during sit. The patella traversed the entire proximodistal length of the femoral trochlea during these daily activities.
Conclusions: Using single-plane flat-panel imaging, we demonstrated normal in vivo patellofemoral kinematics is tightly coupled with femorotibial kinematics; however, trot kinematic patterns did not follow the path defined by walking and stand-to-sit motions. Our normal data can be used in future studies to help define patellofemoral joint kinematics in dogs with stifle abnormalities.

Abstract

Background: Patellar abnormalities are a common cause of pain and lameness in dogs; however, in vivo the relative motion between the femur and patella in dogs is not well described. The objective of this study was to define normal in vivo sagittal plane patellofemoral kinematics in three axes of motion using non-invasive methods. We hypothesized patellofemoral alignment in the sagittal plane would tightly correlate with the femorotibial flexion angle. Six healthy dogs without orthopedic disease underwent computed tomography (CT) of their hind limbs to create 3-D models of the patella and femur. Normal stifle joint motion was captured via flat-panel imaging while each dog performed a series of routine activities, including sitting, walking, and trotting. The 3-D models of the patella and femur were digitally superimposed over the radiographic images with shape-matching software and the precise movement of the patella relative to the femur was calculated.
Results: As the femorotibial joint flexed, the patellofemoral joint also flexed and the patella moved caudally and distally within the femoral trochlea during each activity. Patellar flexion and distal translation during walk and sit were linearly coupled with the femorotibial flexion angle. Offset was evident while trotting, where patella poses were significantly different between early and late swing phase (p ≤ 0.003). Patellar flexion ranged from 51 to 6° while trotting. The largest flexion angle (92°) occurred during sit. The patella traversed the entire proximodistal length of the femoral trochlea during these daily activities.
Conclusions: Using single-plane flat-panel imaging, we demonstrated normal in vivo patellofemoral kinematics is tightly coupled with femorotibial kinematics; however, trot kinematic patterns did not follow the path defined by walking and stand-to-sit motions. Our normal data can be used in future studies to help define patellofemoral joint kinematics in dogs with stifle abnormalities.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 27 Dec 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Uncontrolled Keywords:Gait analysis, Dog, Kinematic, Patellofemoral
Language:English
Date:2016
Deposited On:27 Dec 2016 11:46
Last Modified:13 Aug 2017 03:39
Publisher:BioMed Central
ISSN:1746-6148
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12917-016-0889-z
PubMed ID:27884141

Download

Download PDF  'Normal patellofemoral kinematic patterns during daily activities in dogs'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)