Header

UZH-Logo

Maintenance Infos

Female cats have lower rates of apoptosis in peripheral blood lymphocytes than male cats: correlation with estradiol-17beta, but not with progesterone blood levels


Hofmann-Lehmann, Regina; Holznagel, Edgar; Lutz, Hans (1998). Female cats have lower rates of apoptosis in peripheral blood lymphocytes than male cats: correlation with estradiol-17beta, but not with progesterone blood levels. Veterinary Immunology and Immunopathology, 65(2-4):151-160.

Abstract

During earlier study, we quantified by flow cytometry the rate of apoptotic feline lymphocytes after overnight culture. We found evidence that the sex of the animals influences the rate of apoptosis, intact females showed lower rates of apoptosis in lymphocytes cultured overnight than castrated male cats. This observation was also confirmed for cats that were previously experimentally infected with the feline immunodeficiency virus (FIV). In an attempt to find an explanation for these sexually determined differences, plasma estradiol-17beta and progesterone levels were measured by radio-immuno assay in the blood of these cats. The hormone levels were analyzed with respect to the rate of lymphocyte apoptosis. As expected, castrated males had lower blood levels of estradiol and progesterone than females. However, no overall correlation was found between hormone blood levels and rate of apoptosis under non-stimulating conditions. Interestingly, the rate of apoptosis found in lymphocytes collected from females and stimulated overnight in phytohaemaglutinin-containing medium, showed a strong negative correlation with the estradiol levels in the blood of these cats. To our knowledge, this is the first confirmation that estradiol in physiological concentrations may protect peripheral lymphocytes from apoptosis after stimulation. No correlation was found in male cats. In conclusion, these observations broaden the list of sexually determined differences of the immune system, sex and sex hormones predispose males and females for certain immune responses and dysfunctions. The present observations have to be taken into account when designing or interpreting experiments on apoptosis and, for example, evaluating the influence of a preexisting FIV infection on the rate of apoptosis. It would be highly advisable to include only spayed cats in studies on the immune system so as to minimize the influence of sex hormones.

Abstract

During earlier study, we quantified by flow cytometry the rate of apoptotic feline lymphocytes after overnight culture. We found evidence that the sex of the animals influences the rate of apoptosis, intact females showed lower rates of apoptosis in lymphocytes cultured overnight than castrated male cats. This observation was also confirmed for cats that were previously experimentally infected with the feline immunodeficiency virus (FIV). In an attempt to find an explanation for these sexually determined differences, plasma estradiol-17beta and progesterone levels were measured by radio-immuno assay in the blood of these cats. The hormone levels were analyzed with respect to the rate of lymphocyte apoptosis. As expected, castrated males had lower blood levels of estradiol and progesterone than females. However, no overall correlation was found between hormone blood levels and rate of apoptosis under non-stimulating conditions. Interestingly, the rate of apoptosis found in lymphocytes collected from females and stimulated overnight in phytohaemaglutinin-containing medium, showed a strong negative correlation with the estradiol levels in the blood of these cats. To our knowledge, this is the first confirmation that estradiol in physiological concentrations may protect peripheral lymphocytes from apoptosis after stimulation. No correlation was found in male cats. In conclusion, these observations broaden the list of sexually determined differences of the immune system, sex and sex hormones predispose males and females for certain immune responses and dysfunctions. The present observations have to be taken into account when designing or interpreting experiments on apoptosis and, for example, evaluating the influence of a preexisting FIV infection on the rate of apoptosis. It would be highly advisable to include only spayed cats in studies on the immune system so as to minimize the influence of sex hormones.

Statistics

Citations

29 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 28 Dec 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Uncontrolled Keywords:Apoptosis; Peripheral blood lymphocytes; Cats; Sex hormones; Estradiol; Progesterone
Date:23 October 1998
Deposited On:28 Dec 2016 11:17
Last Modified:15 Jan 2017 06:23
Publisher:Elsevier
ISSN:0165-2427
Publisher DOI:https://doi.org/10.1016/S0165-2427(98)00150-0
PubMed ID:9839870

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 119kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations