Header

UZH-Logo

Maintenance Infos

A critical look at the merger scenario to explain multiple populations and rotation in iron-complex globular clusters


Gavagnin, Elena; Mapelli, Michela; Lake, George (2016). A critical look at the merger scenario to explain multiple populations and rotation in iron-complex globular clusters. Monthly Notices of the Royal Astronomical Society, 461(2):1276-1287.

Abstract

Merging has been proposed to explain multiple populations in globular clusters (GCs) where there is a spread in iron abundance (hereafter, iron-complex GCs). By means of N-body simulations, we investigate if merging is consistent with the observations of subpopulations and rotation in iron-complex GCs. The key parameters are the initial mass and density ratios of the progenitors. When densities are similar, the more massive progenitor dominates the central part of the merger remnant and the less massive progenitor forms an extended rotating population. The low-mass progenitor can become the majority population in the central regions of the merger remnant only if its initial density is higher by roughly the mass ratio. To match the radial distribution of multiple populations in two iron-complex GCs (ω Cen and NGC 1851), the less massive progenitor needs to be four times as dense as the larger one. Our merger remnants show solid-body rotation in the inner parts, becoming differential in the outer parts. Rotation velocity V and ellipticity ɛ are in agreement with models for oblate rotators with isotropic dispersion. We discuss several kinematic signatures of a merger with a denser lower mass progenitor that can be tested with future observations.

Abstract

Merging has been proposed to explain multiple populations in globular clusters (GCs) where there is a spread in iron abundance (hereafter, iron-complex GCs). By means of N-body simulations, we investigate if merging is consistent with the observations of subpopulations and rotation in iron-complex GCs. The key parameters are the initial mass and density ratios of the progenitors. When densities are similar, the more massive progenitor dominates the central part of the merger remnant and the less massive progenitor forms an extended rotating population. The low-mass progenitor can become the majority population in the central regions of the merger remnant only if its initial density is higher by roughly the mass ratio. To match the radial distribution of multiple populations in two iron-complex GCs (ω Cen and NGC 1851), the less massive progenitor needs to be four times as dense as the larger one. Our merger remnants show solid-body rotation in the inner parts, becoming differential in the outer parts. Rotation velocity V and ellipticity ɛ are in agreement with models for oblate rotators with isotropic dispersion. We discuss several kinematic signatures of a merger with a denser lower mass progenitor that can be tested with future observations.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 03 Jan 2017
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:03 Jan 2017 14:30
Last Modified:08 Dec 2017 21:45
Publisher:Oxford University Press
ISSN:0035-8711
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stw1397

Download

Download PDF  'A critical look at the merger scenario to explain multiple populations and rotation in iron-complex globular clusters'.
Preview
Filetype: PDF
Size: 2MB
View at publisher