Header

UZH-Logo

Maintenance Infos

Black hole starvation and bulge evolution in a Milky Way-like galaxy


Bonoli, Silvia; Mayer, Lucio; Kazantzidis, Stelios; Madau, Piero; Bellovary, Jillian; Governato, Fabio (2016). Black hole starvation and bulge evolution in a Milky Way-like galaxy. Monthly Notices of the Royal Astronomical Society, 459(3):2603-2617.

Abstract

We present a new zoom-in hydrodynamical simulation, `ErisBH', which features the same initial conditions, resolution, and sub-grid physics as the close Milky Way-analogue `Eris' (Guedes et al. 2011), but it also includes prescriptions for the formation, growth and feedback of supermassive black holes. This enables a detailed study of black hole evolution and the impact of active galactic nuclei (AGN) feedback in a late-type galaxy. At z = 0, the main galaxy of ErisBH hosts a central black hole of 2.6 × 106 M⊙, which correlates to the bulge mass and the galaxy's central velocity dispersion similarly to what is observed in the Milky Way and in pseudobulges. During its evolution, the black hole grows mostly through mergers with black holes brought in by accreted satellite galaxies and very little by gas accretion (due to the modest amount of gas that reaches the central regions). AGN feedback is weak and it affects only the central 1-2 kpc. Yet, it limits the growth of the bulge, which results in a rotation curve that, in the inner ˜ 10 kpc, is flatter than that of Eris. We find that ErisBH is more prone to instabilities than Eris, due to its smaller bulge and larger disc. At z ˜ 0.3, an initially small bar grows to be of a few disc scalelengths in size. The formation of the bar causes a small burst of star formation in the inner few hundred pc, provides new gas to the central black hole and causes the bulge to have a boxy/peanut morphology by z = 0.

Abstract

We present a new zoom-in hydrodynamical simulation, `ErisBH', which features the same initial conditions, resolution, and sub-grid physics as the close Milky Way-analogue `Eris' (Guedes et al. 2011), but it also includes prescriptions for the formation, growth and feedback of supermassive black holes. This enables a detailed study of black hole evolution and the impact of active galactic nuclei (AGN) feedback in a late-type galaxy. At z = 0, the main galaxy of ErisBH hosts a central black hole of 2.6 × 106 M⊙, which correlates to the bulge mass and the galaxy's central velocity dispersion similarly to what is observed in the Milky Way and in pseudobulges. During its evolution, the black hole grows mostly through mergers with black holes brought in by accreted satellite galaxies and very little by gas accretion (due to the modest amount of gas that reaches the central regions). AGN feedback is weak and it affects only the central 1-2 kpc. Yet, it limits the growth of the bulge, which results in a rotation curve that, in the inner ˜ 10 kpc, is flatter than that of Eris. We find that ErisBH is more prone to instabilities than Eris, due to its smaller bulge and larger disc. At z ˜ 0.3, an initially small bar grows to be of a few disc scalelengths in size. The formation of the bar causes a small burst of star formation in the inner few hundred pc, provides new gas to the central black hole and causes the bulge to have a boxy/peanut morphology by z = 0.

Statistics

Citations

Altmetrics

Downloads

10 downloads since deposited on 03 Jan 2017
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:03 Jan 2017 10:39
Last Modified:16 Dec 2017 18:02
Publisher:Oxford University Press
ISSN:0035-8711
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stw694

Download

Download PDF  'Black hole starvation and bulge evolution in a Milky Way-like galaxy'.
Preview
Content: Published Version
Filetype: PDF
Size: 11MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)