Header

UZH-Logo

Maintenance Infos

Direct detection of precursors of gas giants formed by gravitational instability with the atacama large millimeter/submillimeter array


Mayer, Lucio; Peters, Thomas; Pineda, Jaime E; Wadsley, James; Rogers, Patrick (2016). Direct detection of precursors of gas giants formed by gravitational instability with the atacama large millimeter/submillimeter array. The Astrophysical Journal, 823(2):L36.

Abstract

Phases of gravitational instability are expected in the early phases of disk evolution, when the disk mass is still a substantial fraction of the mass of the star. Disk fragmentation into sub-stellar objects could occur in the cold exterior part of the disk. Direct detection of massive gaseous clumps on their way to collapse into gas giant planets would offer an unprecedented test of the disk instability model. Here we use state-of-the-art 3D radiation-hydro simulations of disks undergoing fragmentation into massive gas giants, post-processed with RADMC-3D to produce dust continuum emission maps. These are then fed into the Common Astronomy Software Applications (CASA) ALMA simulator. The synthetic maps show that both overdense spiral arms and actual clumps at different stages of collapse can be detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the full configuration at the distance of the Ophiuchus star forming region (125 pc). The detection of clumps is particularly effective at shorter wavelengths (690 GHz) combining two resolutions with multi-scale clean. Furthermore, we show that a flux-based estimate of the mass of a protoplanetary clump can be comparable to a factor of three higher than the gravitationally bound clump mass. The estimated mass depends on the assumed opacity, and on the gas temperature, which should be set using the input of radiation-hydro simulations. We conclude that ALMA has the capability to detect “smoking gun” systems that are a signpost of the disk instability model for gas giant planet formation.

Abstract

Phases of gravitational instability are expected in the early phases of disk evolution, when the disk mass is still a substantial fraction of the mass of the star. Disk fragmentation into sub-stellar objects could occur in the cold exterior part of the disk. Direct detection of massive gaseous clumps on their way to collapse into gas giant planets would offer an unprecedented test of the disk instability model. Here we use state-of-the-art 3D radiation-hydro simulations of disks undergoing fragmentation into massive gas giants, post-processed with RADMC-3D to produce dust continuum emission maps. These are then fed into the Common Astronomy Software Applications (CASA) ALMA simulator. The synthetic maps show that both overdense spiral arms and actual clumps at different stages of collapse can be detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the full configuration at the distance of the Ophiuchus star forming region (125 pc). The detection of clumps is particularly effective at shorter wavelengths (690 GHz) combining two resolutions with multi-scale clean. Furthermore, we show that a flux-based estimate of the mass of a protoplanetary clump can be comparable to a factor of three higher than the gravitationally bound clump mass. The estimated mass depends on the assumed opacity, and on the gas temperature, which should be set using the input of radiation-hydro simulations. We conclude that ALMA has the capability to detect “smoking gun” systems that are a signpost of the disk instability model for gas giant planet formation.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 04 Jan 2017
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:04 Jan 2017 07:41
Last Modified:28 Apr 2017 06:09
Publisher:Institute of Physics Publishing
ISSN:1538-4357
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3847/2041-8205/823/2/L36

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 1MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations