Header

UZH-Logo

Maintenance Infos

Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters


Martizzi, Davide; Hahn, Oliver; Wu, Hao-Yi; Evrard, August E; Teyssier, Romain; Wechsler, Risa H (2016). Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 459(4):4408-4427.

Abstract

We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙ h-1) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of active galactic nucleus (AGN) feedback at the subgrid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low- and high-resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of 2 lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple `regulator' model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however, this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

Abstract

We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙ h-1) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of active galactic nucleus (AGN) feedback at the subgrid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low- and high-resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of 2 lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple `regulator' model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however, this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
6 citations in Scopus®
4 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 04 Jan 2017
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:04 Jan 2017 08:33
Last Modified:02 Feb 2018 11:13
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stw897

Download

Download PDF  'Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters'.
Preview
Filetype: PDF
Size: 1MB
View at publisher