Header

UZH-Logo

Maintenance Infos

Light versus dark in strong-lens galaxies: dark matter haloes that are rounder than their stars


Bruderer, Claudio; Read, Justin I; Coles, Jonathan P; Leier, Dominik; Falco, Emilio E; Ferreras, Ignacio; Saha, Prasenjit (2016). Light versus dark in strong-lens galaxies: dark matter haloes that are rounder than their stars. Monthly Notices of the Royal Astronomical Society, 456(1):870-884.

Abstract

We measure the projected density profile, shape and alignment of the stellar and dark matter mass distribution in 11 strong-lens galaxies. We find that the projected dark matter density profile - under the assumption of a Chabrier stellar initial mass function - shows significant variation from galaxy to galaxy. Those with an outermost image beyond ˜10 kpc are very well fit by a projected Navarro-Frenk-White (NFW) profile; those with images within 10 kpc appear to be more concentrated than NFW, as expected if their dark haloes contract due to baryonic cooling. We find that over several half-light radii, the dark matter haloes of these lenses are rounder than their stellar mass distributions. While the haloes are never more elliptical than edm = 0.2, their stars can extend to e* > 0.2. Galaxies with high dark matter ellipticity and weak external shear show strong alignment between light and dark; those with strong shear (γ ≳ 0.1) can be highly misaligned. This is reassuring since isolated misaligned galaxies are expected to be unstable. Our results provide a new constraint on galaxy formation models. For a given cosmology, these must explain the origin of both very round dark matter haloes and misaligned strong-lens systems.

Abstract

We measure the projected density profile, shape and alignment of the stellar and dark matter mass distribution in 11 strong-lens galaxies. We find that the projected dark matter density profile - under the assumption of a Chabrier stellar initial mass function - shows significant variation from galaxy to galaxy. Those with an outermost image beyond ˜10 kpc are very well fit by a projected Navarro-Frenk-White (NFW) profile; those with images within 10 kpc appear to be more concentrated than NFW, as expected if their dark haloes contract due to baryonic cooling. We find that over several half-light radii, the dark matter haloes of these lenses are rounder than their stellar mass distributions. While the haloes are never more elliptical than edm = 0.2, their stars can extend to e* > 0.2. Galaxies with high dark matter ellipticity and weak external shear show strong alignment between light and dark; those with strong shear (γ ≳ 0.1) can be highly misaligned. This is reassuring since isolated misaligned galaxies are expected to be unstable. Our results provide a new constraint on galaxy formation models. For a given cosmology, these must explain the origin of both very round dark matter haloes and misaligned strong-lens systems.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
1 citation in Scopus®
4 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 04 Jan 2017
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:04 Jan 2017 09:47
Last Modified:02 Feb 2018 11:14
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stv2582

Download

Download PDF  'Light versus dark in strong-lens galaxies: dark matter haloes that are rounder than their stars'.
Preview
Filetype: PDF
Size: 1MB
View at publisher