Header

UZH-Logo

Maintenance Infos

Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner


Müller, Philipp; Ender, Andreas; Joda, Tim; Katsoulis, Joannis (2016). Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence International, 47(4):343-349.

Abstract

OBJECTIVES Little information is available on the impact of different scan strategies on the accuracy of full-arch scans with intraoral scanners. The aim of this in-vitro study was to investigate the trueness and precision of full-arch maxillary digital impressions comparing three scan strategies. METHOD AND MATERIALS Three scan strategies (A, B, and C) were applied each five times on one single model (A, first buccal surfaces, return from occlusal-palatal; B, first occlusal-palatal, return buccal; C, S-type one-way). The TRIOS Pod scanner (3shape, Copenhagen, Denmark) with a color detector was used for these digital impressions. A cast of a maxillary dentate jaw was fabricated and scanned with an industrial reference scanner. This full-arch data record was digitally superimposed with the test scans (trueness) and within-group comparison was performed for each group (precision). The values within the 90/10 percentiles from the digital superimposition were used for calculation and group comparisons with nonparametric tests (ANOVA, post-hoc Bonferroni). RESULTS The trueness (mean ± standard deviation) was 17.9 ± 16.4 μm for scan strategy A, 17.1 ± 13.7 μm for B, and 26.8 ± 14.7 μm for C without statistically significant difference. The precision was lowest for scan strategy A (35.0 ± 51.1 μm) and significantly different to B (7.9 ± 5.6 μm) and C (8.5 ± 6.3 μm). CONCLUSIONS Scan strategy B may be recommended as it provides the highest trueness and precision in full-arch scans and therefore minimizes inaccuracies in the final reconstruction.

Abstract

OBJECTIVES Little information is available on the impact of different scan strategies on the accuracy of full-arch scans with intraoral scanners. The aim of this in-vitro study was to investigate the trueness and precision of full-arch maxillary digital impressions comparing three scan strategies. METHOD AND MATERIALS Three scan strategies (A, B, and C) were applied each five times on one single model (A, first buccal surfaces, return from occlusal-palatal; B, first occlusal-palatal, return buccal; C, S-type one-way). The TRIOS Pod scanner (3shape, Copenhagen, Denmark) with a color detector was used for these digital impressions. A cast of a maxillary dentate jaw was fabricated and scanned with an industrial reference scanner. This full-arch data record was digitally superimposed with the test scans (trueness) and within-group comparison was performed for each group (precision). The values within the 90/10 percentiles from the digital superimposition were used for calculation and group comparisons with nonparametric tests (ANOVA, post-hoc Bonferroni). RESULTS The trueness (mean ± standard deviation) was 17.9 ± 16.4 μm for scan strategy A, 17.1 ± 13.7 μm for B, and 26.8 ± 14.7 μm for C without statistically significant difference. The precision was lowest for scan strategy A (35.0 ± 51.1 μm) and significantly different to B (7.9 ± 5.6 μm) and C (8.5 ± 6.3 μm). CONCLUSIONS Scan strategy B may be recommended as it provides the highest trueness and precision in full-arch scans and therefore minimizes inaccuracies in the final reconstruction.

Statistics

Citations

Altmetrics

Downloads

2 downloads since deposited on 04 Jan 2017
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Preventive Dentistry, Periodontology and Cariology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:April 2016
Deposited On:04 Jan 2017 15:48
Last Modified:08 Jan 2017 06:20
Publisher:Quintessence Publishing
ISSN:0033-6572
Publisher DOI:https://doi.org/10.3290/j.qi.a35524
PubMed ID:26824085

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher