Header

UZH-Logo

Maintenance Infos

Searches for R-parity-violating supersymmetry in pp collisions at $\sqrt{s}$ = 8 TeV in final states with 0-4 leptons


CMS Collaboration; Canelli, F; Chiochia, V; Kilminster, B; Robmann, P; et al (2016). Searches for R-parity-violating supersymmetry in pp collisions at $\sqrt{s}$ = 8 TeV in final states with 0-4 leptons. Physical review. D, 94:112009.

Abstract

Results are presented from searches for R-parity-violating supersymmetry in events produced in pp collisions at $\sqrt{s}$=8  TeV at the LHC. Final states with 0, 1, 2, or multiple leptons are considered independently. The analysis is performed on data collected by the CMS experiment corresponding to an integrated luminosity of 19.5  fb$^{−1}$. No excesses of events above the standard model expectations are observed, and 95% confidence level limits are set on supersymmetric particle masses and production cross sections. The results are interpreted in models featuring R-parity-violating decays of the lightest supersymmetric particle, which in the studied scenarios can be either the gluino, a bottom squark, or a neutralino. In a gluino pair production model with baryon number violation, gluinos with a mass less than 0.98 and 1.03 TeV are excluded, by analyses in a fully hadronic and one-lepton final state, respectively. An analysis in a dilepton final state is used to exclude bottom squarks with masses less than 307 GeV in a model considering bottom squark pair production. Multilepton final states are considered in the context of either strong or electroweak production of superpartners and are used to set limits on the masses of the lightest supersymmetric particles. These limits range from 300 to 900 GeV in models with leptonic and up to approximately 700 GeV in models with semileptonic R-parity-violating couplings.

Abstract

Results are presented from searches for R-parity-violating supersymmetry in events produced in pp collisions at $\sqrt{s}$=8  TeV at the LHC. Final states with 0, 1, 2, or multiple leptons are considered independently. The analysis is performed on data collected by the CMS experiment corresponding to an integrated luminosity of 19.5  fb$^{−1}$. No excesses of events above the standard model expectations are observed, and 95% confidence level limits are set on supersymmetric particle masses and production cross sections. The results are interpreted in models featuring R-parity-violating decays of the lightest supersymmetric particle, which in the studied scenarios can be either the gluino, a bottom squark, or a neutralino. In a gluino pair production model with baryon number violation, gluinos with a mass less than 0.98 and 1.03 TeV are excluded, by analyses in a fully hadronic and one-lepton final state, respectively. An analysis in a dilepton final state is used to exclude bottom squarks with masses less than 307 GeV in a model considering bottom squark pair production. Multilepton final states are considered in the context of either strong or electroweak production of superpartners and are used to set limits on the masses of the lightest supersymmetric particles. These limits range from 300 to 900 GeV in models with leptonic and up to approximately 700 GeV in models with semileptonic R-parity-violating couplings.

Statistics

Altmetrics

Downloads

6 downloads since deposited on 11 Jan 2017
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:11 Jan 2017 11:51
Last Modified:08 Mar 2017 10:39
Publisher:American Physical Society
ISSN:2470-0010
Publisher DOI:https://doi.org/10.1103/PhysRevD.94.112009

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB
View at publisher
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations