Header

UZH-Logo

Maintenance Infos

Microstructural Integrity of Hippocampal Subregions Is Impaired after Mild Traumatic Brain Injury - Zurich Open Repository and Archive


Leh, Sandra E; Schroeder, Clemens; Chen, Jen-Kai; Chakravarty, M Mallar; Park, Min Tae M; Cheung, Bob; Huntgeburth, Sonja C; Gosselin, Nadia; Hock, Christoph; Ptito, Alain; Petrides, Michael (2017). Microstructural Integrity of Hippocampal Subregions Is Impaired after Mild Traumatic Brain Injury. Journal of Neurotrauma, 34(7):1402-1411.

Abstract

Mild traumatic brain injury (mTBI) affects a large number of individuals and diffusion tensor imaging can be used to investigate microstructural integrity of brain tissue after mTBI. However, results have varied considerably between studies and gray matter (GM) integrity has been largely neglected in these investigations. Given impaired working memory processing after mTBI and its possible association with Alzheimer's disease, we investigated hippocampal integrity and parcellated this structure into five subregions: subiculum, cornu ammonis (CA) 1, CA 2/3, CA 4/dentate gyrus, and stratum radiatum/lacunosum-moleculare. We also employed shape analysis of bilateral hippocampi to explore whether morphological changes had occurred due to the traumatic injury and conducted neuropsychological memory tests. The sample comprised 15 subjects with mTBI (18-55 years, nine female) and 13 age- and sex-matched healthy control subjects (19-57 years, nine female). Voxelwise analyses showed significantly increased mean diffusivity in patients, compared with controls, in the right hippocampus and three of its five subregions (family-wise error corrected p < 0.05). Additionally, results from probabilistic tractography indicated impaired CA 1 connectivity after mTBI (Benjamini-Hochberg false discovery rate [FDR] corrected p < 0.05). Shape of bilateral hippocampi did not significantly differ between groups (Benjamini-Hochberg FDR corrected p > 0.05). Subjects with mTBI reported more symptoms and performed worse in a non-standard verbal working memory task. Based on these preliminary findings, we were able to demonstrate altered diffusivity of hippocampal subregions following mTBI, indicating impaired GM microstructural integrity. These differences highlight the potential of diffusion imaging for investigation of subtle yet relevant changes in GM microstructure not detected otherwise following mTBI.

Abstract

Mild traumatic brain injury (mTBI) affects a large number of individuals and diffusion tensor imaging can be used to investigate microstructural integrity of brain tissue after mTBI. However, results have varied considerably between studies and gray matter (GM) integrity has been largely neglected in these investigations. Given impaired working memory processing after mTBI and its possible association with Alzheimer's disease, we investigated hippocampal integrity and parcellated this structure into five subregions: subiculum, cornu ammonis (CA) 1, CA 2/3, CA 4/dentate gyrus, and stratum radiatum/lacunosum-moleculare. We also employed shape analysis of bilateral hippocampi to explore whether morphological changes had occurred due to the traumatic injury and conducted neuropsychological memory tests. The sample comprised 15 subjects with mTBI (18-55 years, nine female) and 13 age- and sex-matched healthy control subjects (19-57 years, nine female). Voxelwise analyses showed significantly increased mean diffusivity in patients, compared with controls, in the right hippocampus and three of its five subregions (family-wise error corrected p < 0.05). Additionally, results from probabilistic tractography indicated impaired CA 1 connectivity after mTBI (Benjamini-Hochberg false discovery rate [FDR] corrected p < 0.05). Shape of bilateral hippocampi did not significantly differ between groups (Benjamini-Hochberg FDR corrected p > 0.05). Subjects with mTBI reported more symptoms and performed worse in a non-standard verbal working memory task. Based on these preliminary findings, we were able to demonstrate altered diffusivity of hippocampal subregions following mTBI, indicating impaired GM microstructural integrity. These differences highlight the potential of diffusion imaging for investigation of subtle yet relevant changes in GM microstructure not detected otherwise following mTBI.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:04 Jan 2017 16:26
Last Modified:06 Apr 2017 01:02
Publisher:Mary Ann Liebert
ISSN:0897-7151
Publisher DOI:https://doi.org/10.1089/neu.2016.4591
PubMed ID:27786023

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations