Header

UZH-Logo

Maintenance Infos

Microscopic origin of chiral shape induction in achiral crystals


Xiao, Wende; Ernst, Karl-Heinz; Palotas, Krisztian; Zhang, Yuyang; Bruyer, Emilie; Peng, Lingqing; Greber, Thomas; Hofer, Werner A; Scott, Lawrence T; Fasel, Roman (2016). Microscopic origin of chiral shape induction in achiral crystals. Nature Chemistry, 8(4):326-330.

Abstract

In biomineralization, inorganic materials are formed with remarkable control of the shape and morphology. Chirality, as present in the biomolecular world, is therefore also common for biominerals. Biomacromolecules, like proteins and polysaccharides, are in direct contact with the mineral phase and act as modifiers during nucleation and crystal growth. Owing to their homochirality—they exist only as one of two possible mirror-symmetric isomers—their handedness is often transferred into the macroscopic shape of the biomineral crystals, but the way in which handedness is transmitted into achiral materials is not yet understood at the atomic level. By using the submolecular resolution capability of scanning tunnelling microscopy, supported by photoelectron diffraction and density functional theory, we show how the chiral ‘buckybowl’ hemibuckminsterfullerene arranges copper surface atoms in its vicinity into a chiral morphology. We anticipate that such new insight will find its way into materials synthesis techniques.

Abstract

In biomineralization, inorganic materials are formed with remarkable control of the shape and morphology. Chirality, as present in the biomolecular world, is therefore also common for biominerals. Biomacromolecules, like proteins and polysaccharides, are in direct contact with the mineral phase and act as modifiers during nucleation and crystal growth. Owing to their homochirality—they exist only as one of two possible mirror-symmetric isomers—their handedness is often transferred into the macroscopic shape of the biomineral crystals, but the way in which handedness is transmitted into achiral materials is not yet understood at the atomic level. By using the submolecular resolution capability of scanning tunnelling microscopy, supported by photoelectron diffraction and density functional theory, we show how the chiral ‘buckybowl’ hemibuckminsterfullerene arranges copper surface atoms in its vicinity into a chiral morphology. We anticipate that such new insight will find its way into materials synthesis techniques.

Statistics

Citations

Altmetrics

Downloads

0 downloads since deposited on 11 Jan 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2016
Deposited On:11 Jan 2017 16:15
Last Modified:11 Jan 2017 16:15
Publisher:Nature Publishing Group
ISSN:1755-4330
Publisher DOI:https://doi.org/10.1038/nchem.2449
PubMed ID:27001727

Download