Header

UZH-Logo

Maintenance Infos

Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes


Sasse, Joëlle; Schlegel, Markus; Borghi, Lorenzo; Ullrich, Friederike; Lee, Miyoung; Liu, Guo-Wei; Giner, José-Luis; Kayser, Oliver; Bigler, Laurent; Martinoia, Enrico; Kretzschmar, Tobias (2016). Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes. Plant, Cell & Environment, 39(12):2725-2739.

Abstract

As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters, and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Down-regulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance.

Abstract

As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters, and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Down-regulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance.

Statistics

Altmetrics

Downloads

1 download since deposited on 12 Jan 2017
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:December 2016
Deposited On:12 Jan 2017 09:35
Last Modified:03 Jun 2017 10:04
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0140-7791
Publisher DOI:https://doi.org/10.1111/pce.12828
PubMed ID:27628025

Download

Preview Icon on Download
Content: Accepted Version
Filetype: PDF - Registered users only until 25 October 2017
Size: 3MB
View at publisher
Embargo till: 2017-10-25
Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 874kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations