Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes

Sasse, Joëlle; Schlegel, Markus; Borghi, Lorenzo; Ullrich, Friederike; Lee, Miyoung; Liu, Guo-Wei; Giner, José-Luis; Kayser, Oliver; Bigler, Laurent; Martinoia, Enrico; Kretzschmar, Tobias

Abstract: As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters, and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Down-regulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance.

DOI: https://doi.org/10.1111/pce.12828

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-130624
Accepted Version

Originally published at:
Sasse, Joëlle; Schlegel, Markus; Borghi, Lorenzo; Ullrich, Friederike; Lee, Miyoung; Liu, Guo-Wei; Giner, José-Luis; Kayser, Oliver; Bigler, Laurent; Martinoia, Enrico; Kretzschmar, Tobias (2016). Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes. Plant, Cell Environment, 39(12):2725-2739.
DOI: https://doi.org/10.1111/pce.12828
Petunia hybrida PDR2 is Involved in Herbivore Defense by Controlling Steroidal Contents in Trichomes

Joëlle Sasse¹, Markus Schlegel¹&, Lorenzo Borghi¹&, Friederike Ullrich³, Miyoung Lee¹, Guo-Wei Liu¹, José-Luis Giner⁴, Oliver Kayser³, Laurent Bigler²*, Enrico Martinoia¹†, and Tobias Kretzschmar¹, ⁵*

¹Institute of Plant Biology, University of Zurich, Zurich, Switzerland
²Department of Chemistry, University of Zurich, Zurich, Switzerland
³Department of Biochemical and Chemical Engineering, TU Dortmund, Dortmund, Germany
⁴Department of Chemistry, SUNY-ESF, Syracuse, NY, USA
⁵International Rice Research Institute, Metro-Manila, Philippines

& equally contributing second authors
*Correspondence: t.kretzschmar@irri.org; laurent.bigler@chem.uzh.ch
Abstract

As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Downregulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance.

Keywords:
Petunia, ABC transporter, Glandular trichome, Herbivory, Secondary metabolism, metabolomics
Introduction

Over a million insect species are estimated to feed on terrestrial plants (Howe and Jander 2008), and insect pests have been causing crop losses since the dawn of agriculture (Oerke 2005). Through 400 million years of co-evolution plants developed a number of constitutive and inducible defense responses to cope with insect herbivory. Wax depositions on plant surfaces, foliar defense compounds, and leaf hairs (trichomes) are examples for constitutive defenses against biotic stressors (Howe and Jander 2008). Examples of inducible responses include the production of protease inhibitors that impede digestion, the release of volatiles that attract specific predators, and the synthesis and activation of toxins (Bodenhausen and Reymond 2007). Toxins and deterrents are often produced and stored in trichomes (Howe and Jander 2008; Bleeker et al. 2012).

Trichomes are uni- or multicellular epidermal protrusions that are formed on aerial parts of plants (Wagner 1991) and are broadly classified into being either non-glandular or glandular. Glandular trichomes consist of a bulbous head on top of stalk cells (Wagner 1991), which is loaded with secondary metabolites. The head is separated from the environment by a cuticule layer only, which bursts easily on contact with an herbivore to release its contents (Wagner 1991). Glandular trichomes are of demonstrated importance in herbivory defense as exemplified by Datura wrightii, a species with trichome bimorphism. The variety producing glandular trichomes was observed to be more resistant to herbivory than the variety that produces exclusively non-glandular trichomes (van Dam and Hare 1998; Hare 2005). Glandular trichomes are highly specialized on the production and storage of secondary metabolites, which can make up to 10-15% of the leaf dry weight (Wagner et al. 2004).
A plethora of secondary metabolites, among them multiple alkaloids, terpenes, polyketides, and phenolics are believed to have evolved primarily as means of defense and many of them are trichome specific (Wang et al. 2001; Yazaki 2006; Schilmiller et al. 2008; Slocombe et al. 2008; Loreto et al. 2014). Terpenes constitute the largest group of secondary metabolites with over 25,000 known structures that include toxins and deterrents against bacteria, fungi, and animals (Gershenzon and Dudareva 2007). Terpenoid metabolism is highly active in glandular trichomes of many species including Solanaceae (Besser et al. 2009; Bleeker et al. 2012; Tissier et al. 2013). Cembranoids, a group of diterpenes in a tobacco variety were shown to accumulate to approximately 10% of leaf dry weight and 60% of the trichome exudate weight (Wang et al. 2001; Wang and Wagner 2003).

Many secondary metabolites are potentially harmful to the plant itself (Cutler et al. 1977; Howe and Jander 2008) and thus, plants have developed strategies to avoid autoin intoxication. Some highly toxic compounds are only fully synthesized upon attack or stored as conjugated inert molecules until activated upon tissue wounding. Many defense compounds are either stored within vacuoles or secreted into the apoplast, places that are not connected to the plant’s primary metabolism. On tissue level they are stored in specialized organs such as glandular trichomes, laticifers or secretory ducts. Indeed, apart from import of energy-rich compounds and precursors for specialized biosynthetic pathways, trichome metabolism is largely disconnected from the rest of the plant metabolism (Schilmiller et al. 2008). However, many compounds such as terpenoids, are hydrophobic and tend to diffuse across membranes along their concentration gradient. To avoid toxic effects due to reflux, steep concentration
gradients have to be maintained between sites of synthesis and storage that likely depend on the existence of energy-dependent transporters. Transporters that directly utilize adenosine triphosphate (ATP) as an energy source are more efficient in establishing and maintaining steep concentration gradients than those relying on electrochemical gradients (Kreuz et al. 1996) Thus, proteins of the ATP binding cassette (ABC) family (Kang et al. 2011; Yazaki 2006) are primary candidates to create and maintain the postulated strong gradients between trichomes and leaves or trichome heads and stalk cells. ABC proteins are present in all kingdoms, from bacteria to humans (Theodoulou 2000), but they are most abundant and diversified in plants. ABC members of the ABCG subfamily have been reported to be involved in lipid and phytohormone transport, biotic stress responses of plants and in transport of secondary metabolites (Kang et al. 2011; Kretzschmar et al. 2012; Banasiak et al. 2013, Hwang et al. 2016). Many full-size ABCG members, also termed Pleiotropic Drug Resistance (PDR) proteins, are transcriptionally responsive to pathogen elicitors and jasmonic acid treatment (Kretzschmar et al. 2011). NtPDR1 and NpPDR1 were furthermore demonstrated to be expressed in glandular trichomes (Sasabe et al. 2002; Crouzet et al. 2013; Stukkens et al. 2005) and involved in transport of the fungi-toxic diterpene sclareol (Cutler et al. 1977; Jasinski et al. 2001; Crouzet et al. 2013). NtPDR5 was described as responsive to herbivory, its expression being induced upon jasmonic acid treatment, mechanical wounding, and feeding by the Solanaceae specialist Manduca sexta (Bienert et al. 2012). However, potential substrates of this transporter remain unknown. Collectively PDR proteins are plasma membrane intrinsic secondary metabolite transporters that have been found in trichomes, making them excellent candidates for cellular export of deterrents and toxins related to herbivory. We performed our analysis
in petunia, which serves as a Solanaceae model species (Gerats and Vandenbussche 2005) and has leaves that are highly toxic to herbivores. Here, we report on PhPDR2, which localizes to glandular trichomes of petunia leaf and stem tissue and is involved in herbivore defense presumably through modulation of insecticidal steroidal compounds.
Methods

Plant growth conditions: All experiments were performed with *Petunia hybrida* cultivar W115. Plants were grown under long day conditions with 16 h of continuous light at 40% relative humidity. Plants were either grown on soil (ED 73 Einheitserde) or on clay granules (Oil Dry US Special from Damolin) supplemented once a week with 1x Hoagland solution. On plate, plants were grown on medium containing 2.2 g L$^{-1}$ MS (Duchefa) and with or without 15 g L$^{-1}$ sucrose (0.5 MS - Suc, 0.5 MS + Suc plates, respectively), supplemented with 9 g L$^{-1}$ phyto agar (Duchefa) at 16 h of light and 25 °C.

Conserved PDR domain amplification: For the investigation of petunia PDR sequences expressed in leaf and trichome tissue, primers were designed on a CDS alignment of PDRs from different Solanaceae. *Solanum lycopersicum* sequences were obtained from a Blast of PhPDR2 and PDR1 against the tomato database (http://mips.helmholtz-muenchen.de/plant/tomato/database). The search resulted in 23 hits listed in the Accession Numbers section. *Solanum tuberosum* CDS were obtained from GenBank for StPDR1 – StPDR4, and by a Blast search with PDR1 and PhPDR2 against the *Solanum tuberosum* database (http://solgenomics.net/organism/Solanum_tuberosum/genome), which resulted in 29 hits listed in the Accession Numbers section. Furthermore, the *Nicotiana plumbaginifolia* CDS of NpPDR1, NpPDR2, NpPDR3, NpPDR5, the *Nicotiana tabacum* NtPDR1, NtPDR3, NtPDR4, NtPDR5a, and NtPDR5b were included. The Walker A box of NBD 2 and the PDR signature 4 were part of the most conserved part of the alignment. Thus, PCR was performed on this region (F 5’-agcwytrrtggwtyagtggdgctgg, R 5’-ctcatcaadgcttcaawatgtc) and the fragments were cloned into pGEM®-T easy vector (Promega, USA), sequenced and aligned with the MultAlin software.
Fragments that were only amplified once were excluded from the analysis.

PhPDR2 phylogenetic analysis:

To set PhPDR2 in relation to described PDR proteins, the well-established *Oryza sativa* and the *A. thaliana* PDR proteins, as well as *Spirodela polyrrhiza SpTUR2*, *Glycine max GmPDR12*, the *N. plumbaginifola NpPDR1, NpPDR2, NpPDR3, NpPDR5*, the *N. tabacum NtPDR1, NtPDR3, NtPDR4, NtPDR5a, NtPDR5b*, the *Petunia hybrida PDR1* were included in the analysis. PDR Clusters were annotated after Crouzet et. al, 2005. The conserved region (see Conserved domain analysis) of the respective genes was identified and phylogeny of the 0.5 kb fragments was analyzed with a maximum-likelihood tree created on Phylogeny.fr (http://www.phylogeny.fr/)(Dereeper et al. 2008). with the following settings: 16 maximal iterations in MUSCLE alignment, minimal block length of 10 and no gap positions in Gblocks 0.91b alignment refinement (Dereeper et al. 2008).

PhPDR2 transcriptional induction and quantitative PCR: For hormone and elicitor treatment 14 d old W115 seedlings grown on plate were exposed for 24 h with final concentrations of 100 µM salicylic acid (SA), 0.1 ml L⁻¹ methyl-jasmonate (MJa), 10 g L⁻¹ yeast extract, 10 µM abscisic acid (ABA), 25 µM 1-naphthaleneacetic acid (NAA), or 500 µM sclareol.

RNA was isolated with the RNeasy Plant Mini Kit (Qiagen USA) and reverse transcribed to cDNA with M-MLV Reverse Transcriptase (Promega, USA). Quantitative PCR was performed with 5'-TCAAGGCATTCAACTTCCAG and 5'-TACTGACCGAGTCTCCACCA for PhPDR2 transcription level detection in seedlings and in various tissues. Glyceraldehyde-3-phosphate dehydrogenase (GapDH) served as a housekeeping gene,
and was amplified with 5'-GACTGGAGAGGTGGAAGAGC and 5'-CCGTTAAGAGCTGGGAGAAC. All reactions were performed in SYBR Green PCR Master Mix (Applied Biosystems) on a 7500 Fast Real-Time PCR system (Applied Biosystems).

PhPDR2 cloning strategy: Partial sequences of putative ABCG/PDR transcripts were amplified from total cDNA of W115 individuals. NBD1-specific amplicons of around 0.5 kb were obtained with 5'-mgwatgactctdytkgytkggacctcc targeting PDR signature 1 and 5'-gyttcytytgncchcchgaaatwcc targeting the ABC signature. NBD2-specific amplicons of around 0.5 kb were obtained with 5'-gggwaaracggwgtyagtggwgcw targeting the Walker A box and 5'-ctcatnacaatgwcgcwgctctwgc targeting PDR signature 3. Fragments for the respective NBDs were aligned and the ABCG/PDR subfamily specific consensus primers (F 5'-tattgggacttgaaatttgtgccgatac, R 5'-gctccactaacccatcagagctgtc) were designed to amplify putative ABCG/PDR coding regions spanning NBD1 and NBD2 from W115 trichome cDNA.

Amplification of upstream and downstream sequences of PhPDR2 full length transcript was achieved via 5'RACE and 3'RACE PCRs using the SMART-RACE cDNA Amplification Kit (Clontech, Takara Bio Company, USA) according to the manufacturers specifications. 5' RACE primer and 5' nested RACE primer had the following sequence: 5'-atggatgctgaagaaggccgagctcttc and 5'-cccttaccatgtcatccaccaag. 3' RACE primer and nested 3' RACE primer sequences were: 5'-gacaggtgccctcagatagttgg and 5'-caggagtatattgagggtataatccaca.

The PhPDR2 genomic DNA sequence was cloned in two sequential steps from W115 DNA. First, a 2.6 kb 5' part was amplified (F 5'-atccgggataatggcctgctttttaacctcttataaatccaca, R 5'-ctcatnacaatgwcgcwgctctwgc, F contains a XmaI site and R a endogenous BamHI
The PCR product was T/A cloned into pGEM®-T easy (Promega).

Second, the 3’ 5.3 kb part of PhPDR2 was amplified in to single PCRs. PCR1: F1 5’-ttaaggatcttttgtcatagcgggtc with the endogenous BamHI site (underlined), R1 5’-catcatcgggtgaagtccagt. PCR2: F2 5’-gaagaaatgtgttg, R2 5’-taagcggcgcctatctttgtctggaagt with a NotI site (underlined). A second PCR (F1 and R2) resulted in amplification of the full 5.3 kb. The PCR product was cloned into pGEM®-T easy (Promega). Both genomic fragments were transferred into the binary pGreenII0229 vector system (Hellens et al. 2000). A CaMV 35S promoter was added with 5’-gggccgtcaaagattcaaatagaggac and 5’-ctcgagtctctctcgaatg containing an Apal and XhoI restriction site, respectively (underlined), a N-terminal GFP5 was added with 5’-gtcggagatcttctggaaagggcagatt containing a SalI and PstI restriction site, respectively (underlined), and an OCE3 terminator was added with 5’-acggcgcctctctcctagtaacatagatga containing NotI restriction sites (underlined).

PhPDR2 promoter GUS constructs and GUS staining assay: Amplification of a 1.2 kb promoter fragment upstream of the PhPDR2 gene was accomplished via use of the Genome Walker Universal Kit (Clontech, Takara Bio Company, USA) with the primer 5’-caagagctgccatatagccttctc and the nested primer 5’-ctcggatctacctgcagcttc. The fragment was T/A cloned into pGEM-T Easy vector system (Promega, USA) and subsequently reamplified with the primer 5’-ggaaccaagctttgttaggaaatgtgc containing a HindIII restriction site (underlined) and the primer 5’-tacatctagacccctcctagtctcag containing an Xbal restriction site (underlined). The respective restriction sites were used to clone the PhPDR2 promoter fragment into the GUS gene-containing pGPTV-Bar (Becker et al. 1992) vector system.
For GUS staining trials tissues to be investigated were submerged in an appropriate amount of GUS-staining buffer (100 mM sodium phosphate buffer pH 7.0, 10 mM NaEDTA, 1.5 mM potassium hexacyanoferrate(II) trihydrate, 0.25 mM potassium hexacyanoferrate(III), 0.1% (v/v) Triton X-100 and 1 mM 5-bromo-4-chloro-3-indolyl β-D-glucuronide cyclohexylammonium salt) vacuum infiltrated three times for 30 s and incubated in the dark at 37 °C for 12 – 24 h. After staining samples were cleared and stored in 70% ethanol.

PhPDR2 RNA interference constructs: Silencing of PhPDR2 specific transcripts was attempted via the generation of double stranded hairpin RNA fragments utilizing the pKANIBAL vector system (Wesley et al. 2001). A 407 bp fragment containing parts of the 3’ end and the 3’ UTR of PhPDR2 was amplified from PhPDR2 cDNA with 5’-cgatggatcctcgagctgatgatgaaacagtggaa, containing BamHI and XhoI restriction sites (underlined) and 5’-cgatatcggtaggtaccgaataaatatgcgctttca containing ClaI and KpnI sites (underlined). The resulting amplicon was cloned in sense and antisense direction in the two MCS of pKANIBAL flanking the hairpin intron sequence. The pKANIBAL RNAi cassette containing CaMV 35S promoter RNAi construct and OCE3 terminator was excised from the vector backbone using the NotI restriction sites and transferred into the binary pGreenII0229 vector system (Hellens et al. 2000), conferring Glufosinate Ammonium resistance as a selection marker in plants.

After stable transformation of W115 plants the degree of down-regulation in several independent PhPDR2 lines was estimated via semi-quantitative RT-PCR using the PhPDR2 specific primers 5’-ggaatgtattctgccttacc and 5’-gtaatctccaaattgtgatgc. petunia tubulin 1 transcript, partially amplified with 5’-cattggtcaagccggtttac and 5’-acccttgagaccagcagttt
Transient *Arabidopsis thaliana* transformation: *Arabidopsis thaliana* Col-0 plants were grown in a 8 h light, 16 h dark cycle at 21 °C at 60% relative humidity. Leaves of 2-month-old plants were collected, the abaxial cuticule removed with sand paper, and digested at 23 °C, gentle shaking, for 1.5 h in 0.4 M mannitol, 20 mM KCl, 20 mM MES, 0.4% [w/v] macerozyme R10 (Yakult Honsha, Japan), 1% [w/v] cellulase R10 (Yakult Honsha, Japan), pH 5.7. After the digestion, 10 mM CaCl$_2$ was added, and protoplasts were collected at 400 g for 5 min at 4 °C with low break. Supernatant was removed and the pellet was solubilized in W5 solution (154 mM NaCl, 125 mM CaCl$_2$, 5 mM KCl, 2 mM MES, pH 5.7) was moved to a tube containing 21% [w/v] sucrose. The protoplasts were collected at 400 g for 6 min at 4 °C with low break, the supernatant removed, and cells were transferred to a new tube. W5 solution was added, the protoplasts were incubated 30 min on ice, and collected at 400 g for 3 min at 4 °C with low break. Protoplasts were collected and density was adjusted to 2×10^5 cells ml$^{-1}$ in MMg solution (0.4 M mannitol, 15 mM MgCl$_2$, 4 mM MES pH 5.7).

The pGreen179 plasmid containing the 35S:GFP-PDR2 construct was purified with the Plasmid Plus Midi Kit (Qiagen); 10 µg of the construct and 10 µg of the plasma membrane marker *AtHAA2-RFP* (Lee et al. 2003) was added to the protoplasts, as well as 220 µl of PEG solution (40% [w/v] PEG 4000, 0.2 M mannitol, 0.1 M CaCl$_2$). Protoplasts were incubated for 5 min at 23 °C. Further, 800 µl of W5 solution was added, and cells were collected 400 g for 3 min at 4 °C with low break. The supernatant was removed fully, and 100 µl of W5 solution was added. Protoplasts were incubated in the dark for 2 d at 23 °C.

Stable petunia transformation: PhPDR2 promoter GUS constructs and PhPDR2 RNAi constructs were transferred into the W115 background via *Agrobacterium tumefaciens*
mediated transformation of leaf explants, callus induction and plant regeneration (Lutke 2006). 0.45% phytagel were used instead of 0.9% agar in all media and the concentrations of BAP and NAA in the Selection Medium was adjusted between 1 - 2 mg L$^{-1}$ for the former and 0.05 - 0.15 mg L$^{-1}$ for the latter to maximize shoot induction for each individual transformation.

Regenerated plantlets were tested for successful construct insertion via PCR on genomic DNA. The primers 5'-acggtccacatgccggtatatacgatg and 5'-gatggcatttgtaggagccaccttcc, targeting the CaMV 35S promoter, were used to confirm RNAi construct insertion. The primers 5'-gaattgatcagcgggtagg and 5'-ggtaatgacaggttaggagttg, targeting the GUS gene, were used to confirm GUS construct insertion.

Trichome quantification: Leaves of 3-month-old, greenhouse-grown W115 plants (n=6) were quantified for trichome density. 0.5 cm2 leaf fragments were collected at the middle leaf margin and on the middle leaf lamina. Each leaf fragment was then cut into five 0.5 x 0.1 cm strips for trichome quantification on both adaxial and abaxial sides at the stereomicroscope.

Sclareol growth assays: For the germination assay, seeds of wild type and *PhPDR2*-RNAi lines were grown on 0.5 MS – Suc plates supplemented with 0, 100, 250, or 500 µM sclareol. The germination rate was determined after xx days. For the root growth assay, wild type and *PhPDR2*-RNAi lines were grown on 0.5 MS – Suc plates for xx days, after which the plantlets were transferred to 0.5 MS – Suc plates supplemented with 0, 100, 250, or 500 µM sclareol. Primary root length was determined for plants grown on sclareol containing plates after xx days and expressed relative to plants grown...
on plates not supplemented with sclareol. PhPDR2 promoter GUS reporter containing lines were grown and stained as described above.

Spodoptera littoralis feeding trials: All larvae for the leaf feeding experiments were kindly provided by Syngenta, Switzerland. Second instar *S. littoralis* larvae were placed in ventilated transparent plastic containers (10 * 10.5 * 4.5 cm). The bottom was covered with a moist paper towel and every 1 - 2 days larvae were supplied with fresh leaves. It was taken care, that their position and developmental stage were the same. The uppermost fully expanded leaves were taken for feeding trials. To ensure that excised leaves kept their turgor, cut petioles ends were inserted into small water containers and sealed with parafilm. All larvae were weighted in regular intervals and their mortality was recorded. A linear model using generalized least squares of the nlme package for the R software (R Development Core Team, 2009, version 2.9.2) was utilized for comparing weight of larvae at different time points. W115 data was set as intercept of the model.

Survival probabilities were calculated as Kaplan-Meier curves.

Leaf washes: Leaves of seven 3-month-old, greenhouse-grown W115, *pdr2¹*, *phdr2²*, and *pdr2³* plants were incubated with the adaxial surface in a glass petri dish with 8 ml of isopropanol:acetonitrile:water 3:3:2 solution for 5 min at 23 °C with gentle shaking. The solution was collected and stored at -20 °C for further use. Samples were concentrated using Oasis HLB 6cc extraction cartridges (Waters). The cartridges were conditioned with methanol, equilibrated with water, and loaded with the samples. After washing with 5 ml water, the cartridges were eluted with 6 ml methanol. Samples were dried under N₂, and resuspended in 200 µl of a isopropanol:acetonitrile:water solution (Kang et al. 2010a) containing two internal standards, 0.05% (+) camphor-10-sulfonic acid (purum, Fluka, Germany) and 0.05% lidocaine hydrochloride monohydrate (Sigma,
Samples were suspended in an ultrasonic bath for 1 min, centrifuged at 13'000 g at 4 °C for 5 min. 5 µl of the supernatant, were used for ultra-high performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HR-MS).

UHPLC-HR-ESI-MS and MS/MS analyses: Samples were analyzed with an ultra-high performance (UHPLC) high-resolution mass spectrometry (HR-MS), which was composed of a Waters Acquity UPLC system (Waters, USA) connected to a maXis quadrupole time-of-flight MS (Bruker Daltonics, Germany). Plant metabolites were separated at 40 °C on a Waters Acquity UPLC BEH column (1 x 50 mm, 1.7 µm) with a flow rate of 0.2 ml min⁻¹, and a mobile phase composed of water (solution A) and acetonitrile (solution B), both of which containing 0.1% HCOOH. The gradient program conditions were: 3% of solvent B during 0.5 min followed by a linear gradient up to 99.5% within 8 min. The gradient was followed by a washing step with 99.5% solvent B for 2.5 min and a re-equilibration step to the initial composition for 2 min. The UHPLC was connected to the MS equipped with an electrospray ion source (ESI) operated either in positive (+) or in negative (-) ionization mode. Nitrogen was used as nebulizer (2.0 bar) and as dry gas (9 L min⁻¹, 205 °C) and as collision gas. MS acquisitions were performed in the mass range from m/z 50 to 1500 at 20'000 resolution (full width at half maximum) and 1.5 scan s⁻¹. Masses were calibrated below 2 ppm accuracy with a 2 mM solution of sodium formate over m/z 158 up to 1450 mass range prior analysis. MS/MS data consisted of averaged spectra acquired at 15, 20, and 30 eV collision energy, at 4 Hz scan rate, in the mass range m/z 50 to 800, and with N₂ as collision gas. Relative metabolite amounts were obtained by manual integration of corresponding signals found in theoretical extracted ion chromatograms (EIC) with ± 0.05 Da width.
The Bruker ProfileAnalysis™ application (Version 2.1, Bruker Daltonics, Germany) was used for unsupervised principal component analysis (PCA) processing of the HR-ESI-MS data. Conspicuous masses having more than 50% reduction of signal intensity in PhPDR2 lines compared to W115 were selected. The corresponding molecular formulas of these masses were calculated at 2 ppm mass accuracy with Smart Formula®, part of the DataAnalysis™ processing software (Bruker Daltonics, Germany). Metabolites of interest for Petunia sp. were finally identified with SciFinder® database (www.cas.org, American Chemical Society) and literature data (Elliger et al. 1988b; Elliger et al. 1988a; Elliger et al. 1989a; Elliger et al. 1990b; Elliger et al. 1990a; Elliger and Waiss 1991; Elliger et al. 1992; Elliger et al. 1993; Tarling et al. 2013).

The UHPLC-HR-ESI-MS data was in addition processed with XCMS Online (http://metlin.scripps.edu/xcms/, Metlin ([Tautenhahn et al. 2012]) analyzing all pdr2 lines versus W115. Following parameters were selected: centwave detection method, 10 ppm mass accuracy, 5 < UHPLC peak width < 20, obiwarp retention time correction, unpaired parametric t-test (Welch t-test, unequal variances), 0.001 statistical threshold. Masses of the aforementioned petuniasterols and petuniolides were identified in the XCMS results file. The flavonoids were detected in negative ionization mode.

Relative petuniolide and petuniasterone amounts in leaves: Leaf margin (ca. 3 mm from the edge) and inner side of the leaves were collected by cutting 3-month-old W115 plants (6 replicates) and two pdr21, phdr22, and pdr23 plants each, and stored at −80°C before extraction. The leaves were immerged in liquid air, grinded manually at temperatures below −10°C. To 50 mg of the frozen sample, 1 mL of the precooled (−18°C) extraction mixture 1 (methanol containing 2 µg mL⁻¹ corticosterone (ISTD) / methyl tert-butyl methylether
(MTBE) 1:4) were added, shaken, incubated 10 min on ice, and sonicated for 10 min at 0°C. Then, 500 µL of extraction mixture 2 (water / methanol 3:1) was added at 23°C. Following vortexing and centrifugation (2 min, 13’000 g), aliquots of the upper phases (600 µl) were transferred to new tubes and the solvent was evaporated with N₂ gas at 23°C. Finally, the samples were re-suspended in 200 µL of acetonitrile / Isopropanol 7:3 and used for UHPLC-MS analysis.

Samples (1 µL injection) were analyzed with UHPLC-HR-MS instrumentation described above in a random sequence. Chromatographic conditions were different: Separation at 60°C on a Waters Acquity UPLC BEH C8 column (2.1 x 100 mm, 1.7 µm) with a flow rate of 0.4 ml min⁻¹, and a mobile phase composed of water (solution A) and acetonitrile (solution B), both them containing 1% of 1 M aq. NH₄OAc and 0.1% AcOH. Elution was started with 5% of solvent B during 1 min followed by a linear gradient up to 100% within 12 min. The gradient was followed by a washing step with 100% solvent B for 5 min and a re-equilibration step to the initial composition for 4 min. Data were quantitatively processed with the Bruker Data Analysis software by manual integration of the high-resolution extracted ion chromatograms (width of ± 0.01 Da) corresponding to the calculated exact masses of the following detected ionized molecules (EIC of the ionized species were combined to improve sensitivity) (Supplemental table 3).

The peak areas shown in figure 7 were normalized to 50 mg leaf material and to the ISTD according to following equation:

\[
\text{Area}_{\text{corr}} [\text{AU}] = \frac{\text{area}_{\text{compound}} \times \text{mass}_{\text{leaf}}}{50 \text{ mg}} \times \frac{\text{average(areas}_{\text{ISTD}})}{\text{area}_{\text{ISTD}}}
\]

Statistical analyses: Data were analyzed using the R software (R Development Core Team 2009), version 2.9.2. For comparing the weight (resp. weight gain) of larvae on
wildtype versus *pdr2* plants, a linear model using generalized least squares (gls) was applied from the package *nlme*. W115 data were set to represent the intercept of the model, against which each line is compared. From survival data, Kaplan-Meier estimates were calculated using the *survival* package in R, and *pdr2* survival curves were then tested for significant differences compared to the W115 curve. For all statistical analyzes, significance was reported at the level $\alpha = 0.05$.

Accession Numbers

Sequence data from this article can be found in the GenBank data library, the tomato genome database (http://mips.helmholtz-muenchen.de/plant/tomato/database), and the potato genome of Solgenomics network (http://solgenomics.net/organism/Solanum_tuberosum/genome) in under the following accession numbers:

Arabidopsis thaliana: At-PDR1/ABCG29/At3g16340 (BK001001), At-PDR2/ABCG30/At4g15230 (BK001000), At-PDR3/ABCG31/At2g29940 (BK001002), At-PDR4/ABCG32/At2g26910 (BK001003), At-PDR5/ABCG33/At2g37280 (BK001004), At-PDR6/ABCG34/At2g36380 (BK001005), At-PDR7/ABCG35/At1g15210 (BK001006), At-PDR8/ABCG36/At1g59870 (BK001007), At-PDR9/ABCG37/At3g53480 (BK001008), At-PDR10/ABCG38/At3g30842 (BK001009), At-PDR11/ABCG39/At1g66950 (BK001010), At-PDR12/ABCG40/At1g15520 (BK001011), At-PDR13/ABCG41/At4g15215 (BK001012), At-PDR14/ABCG42/At4g15233 (BK001013), At-PDR15/ABCG43/At4g15236 (BK001014)

Glycine max: Gm-PDR12 (Q1M2R7)
Nicotiana plumbaginifolia: Np-PDR1 (AJ404328.1), Np-PDR2 (AJ831424.1), Np-PDR3 (AJ831379.1), Np-PDR5 (JQ808000.1)

Nicotiana tabacum: Nt-PDR1 (AB075550.1), Nt-PDR3 (AJ831379.1), Nt-PDR4 (AJ831380.1), Nt-PDR5a (JQ808002.1), Nt-PDR5b (JQ808003.1)

Oryza sativa: Os-PDR1 (BK001015), Os-PDR2 (BK001016), Os-PDR3 (BK001017), Os-PDR4 (BK001018), Os-PDR5 (AJ535050), Os-PDR6 (AJ535049), Os-PDR7 (AJ535048), Os-PDR8 (AJ535047), Os-PDR9 (AJ535046), Os-PDR10 (AJ535045), Os-PDR11 (AJ535044), Os-PDR12 (AJ535043), Os-PDR13 (AJ535042), Os-PDR15 (AJ535041), Os-PDR16 (AAQ01165.1), Os-PDR17 (AK100858), Os-PDR18 (AK072827), Os-PDR20 (EAZ44307.1), Os-PDR21 (AK070409), Os-PDR22 (AK107869), Os-PDR23_1 (AK102367), Os-PDR23_2 (AK103110)

Petunia hybrida: Ph-PDR1 (JQ292813), Ph-PDR2 (KU665392)

Solanum lycopersicum: Solyc02g081870.2.1, Solyc06g076930.1.1, Solyc05g018510.2.1, Solyc11g007300.1.1, Solyc06g036240.1.1, Solyc12g098210.1.1, Solyc09g091660.2.1, Solyc12g100190.1.1, Solyc12g100180.1.1, Solyc12g019640.1.1, Solyc11g067000.1.1, Solyc11g007290.1.1, Solyc11g007280.1.1, Solyc09g091670.2.1, Solyc08g067620.2.1, Solyc08g067610.2.1, Solyc06g065670.2.1, Solyc05g055330.2.1, Solyc05g053610.2.1, Solyc05g053600.2.1, Solyc05g053590.2.1, Solyc05g053570.2.1, Solyc03g120980.2.1

Solanum tuberosum: St-PDR1 (JF720054.1), St-PDR2 (JF440348.1), St-PDR3 (JF720055.1), St-PDR4 (JF720056.1) PGSC0003DMC400041247 PGSC0003DMT400061280, PGSC0003DMC400051611 PGSC0003DMT400076208, PGSC0003DMC400023214 PGSC0003DMT400034124, PGSC0003DMC400051609 PGSC0003DMT400034130, PGSC0003DMT400076206, PGSC0003DMC400023219 PGSC0003DMT400034130,
Spirodela polyrrhiza: Sp-TUR2 (CAA94437)
Results

Screen for PDR sequences expressed in leaves and trichomes

To identify petunia secondary metabolite transporters possibly involved in herbivore defense, a screen for PDR transcripts present in leaves and trichomes was performed with degenerate consensus primers targeting a highly conserved region of Solanaceae PDR sequences. Thirty-two cloned and sequenced amplicons of 0.5 kilobase (kb) size could be assigned to four putative genes, \textit{PhPDR2} - \textit{PhPDR5} (Figure 1). The \textit{PhPDR2} fragment was the most abundant comprising 47% of the analyzed sequences. \textit{PhPDR3} comprised 25% of the amplified sequences, whereas \textit{PDR4} and \textit{PDR5} were lowest in abundance comprising 16% and 12% the sequences, respectively. \textit{PhPDR2} was amplified from trichomes as well as from leaves devoid of trichomes. \textit{PhPDR4} was mainly expressed in trichomes, while \textit{PhPDR3} and \textit{PhPDR5} were mainly found in leaf tissue (Supplemental Figure 1).

A phylogenetic analysis was performed to relate petunia \textit{PhPDR2} – \textit{PhPDR5} fragments to reported PDR sequences of petunia, tomato (\textit{Solanum lycopersicum}), rice (\textit{Oryza sativa}), Arabidopsis (\textit{Arabidopsis thaliana}), \textit{Nicotiana sp.}, \textit{Spirodela polyrrhiza}, and soybean (\textit{Glycine max}) (Supplemental Figure 2). This analysis assigned \textit{PhPDR2}, \textit{PhPDR3}, and \textit{PhPDR4} to cluster I of PDR proteins and \textit{PhPDR5} to cluster III (Supplemental Figure 2)(Crouzet et al. 2006). An additional phylogenetic analysis with focus on functionally characterized PDR genes (Xi et al. 2011; Sasabe et al. 2002; van den Brule and Smart 2002; Jasinski et al. 2001; Lee et al. 2005; Ducos et al. 2005; Galbiati et al. 2008; Chen et al. 2011; Bienert et al. 2012; Eichhorn et al. 2006; Kobae et al. 2006; Ito and Gray 2006; Campbell et al. 2003; Bessire et al. 2011; Trombik et al. 2007).
2008; Badri et al. 2008; Kim et al. 2007; Kretzschmar et al. 2012), revealed that all petunia PDR fragments, except PhPDR2, clustered closely with already characterized PDR sequences (Figure 1). PhPDR3 was found to be highly homologous with NpPDR1, while the trichome-specific PhPDR4 was near identical with NtPDR1. Closest relatives of PhPDR2 were NtPDR1, NpPDR1, AtPDR12, and GmPDR12 (Supplemental Figure 2), with an amino acid identity of 81%, 80%, 69%, and 65%, respectively. Because of the distinctiveness of PhPDR2 and its relatively high abundance we decided to focus further investigations on this sequence. To avoid possible redundancy PhPDR3 and PhPDR4 were dismissed from further analyses as they were likely orthologous with well-characterized NpPDR1 (Jasinki et al. 2001, Stukkens et al. 2005) and NtPDR1 (Sasabe et al. 2002, Couzet et al. 2013) respectively.

The 7541 bp genomic DNA sequence (start ATG to stop TGA) of PhPDR2 consisted of 20 exons (Supplemental Figure 3A). 265 bp upstream of the start ATG, a putative methyl jasmonate (MJA)-responsive element (AACGTG) (Guerineau et al. 2003), was detected. Sequencing of the full length PhPDR2 cDNA revealed an ORF of 4287 base pairs (bp), an 5` UTR of 135 bp, 3`UTR of 253 bp followed by a poly-A tail, resulting in a cDNA size of 4701 bp. The predicted polypeptide of 1429 amino acid residues and a molecular mass of ~162 kD featured a reverse organization of the two NBDs and the transmembrane domains (TMDs), distinct for full size ABCG type transporters (Supplemental Figure 3B). The PhPDR2 NBDs contain the ATP-binding Walker A and B motifs (Walker et al. 1982), the ABC signatures (Martinoia et al. 2002), and all four PDR signatures (van den Brule and Smart 2002).
PhPDR2 subcellular localization and expression pattern

PDR proteins characterized to date localized exclusively to the plasma membrane. For localization of PhPDR2, its genomic sequence was fused to a green fluorescent protein (GFP) reporter sequence (*P35S:GFP-gPDR2*). *At-AHA2*, fused to a red fluorescent protein (*P35S:cAHA2-RFP*), served as a marker for plasma membrane localization (Lee et al. 2003). *Arabidopsis thaliana* mesophyll protoplasts were transiently co-transformed with the aforementioned constructs, and fluorescent signals were recorded. The overlay of the GFP and RFP signals revealed co-localization of the two recombinant proteins (Figure 2), indicating that PhPDR2 localized to the plasma membrane.

To investigate whether PhPDR2 was expressed in tissues other than trichomes and leaves, quantitative RT-PCR was performed on RNA extracted from 14-day-old seedlings, from two-month-old roots and stems, from flower tissue and from selected leaf regions, and the values were expressed relative to expression in full leaf samples. PhPDR2 transcripts were detected in low amounts in flowers, to a higher degree in whole seedlings, roots and stems, and in highest amounts in leaf samples (Figure 3A). PhPDR2 expression was higher in leaf borders than in the central part of the leaf. Leaves devoid of trichomes showed lower expression of PhPDR2 than full leaf samples, and transcription of PhPDR2 was significantly enriched in pure leaf trichome samples (Figure 3A).

In order to obtain a more detailed picture of PhPDR2 expression on a tissue specific level, a 1.2 kb genomic fragment upstream of the PhPDR2 coding sequence was fused with the GUS reporter gene and stably transformed into the petunia cultivar W115. In foliar tissue, PhPDR2 promoter activity was found around the leaf margins (Figure A) and in multicellular glandular trichomes (Figure 4B-C), including the epidermal cells.
basal to the trichomes (Figure 4C). In stem tissue, expression was likewise restricted to trichomes (Figure 4D). Belowground, promoter activity was pronounced in and around developing and emerging lateral root primordia (Figure 4E), *PhPDR2* transcripts were also detected in flower tissue, particularly the stigma (Figure 4F).

To determine elements regulating *PhPDR2* expression, its transcriptional response to various biotic and abiotic stress treatments was monitored. Pathogens commonly elicit a salicylic acid (SA) dependent response, whereas herbivores elicit a jasmonic acid (JA) dependent response (Smith et al. 2009). Thus, the response of *PhPDR2* to SA and JA was investigated. In addition, the response to yeast extract, serving as a general fungal elicitor, was tested. To examine putative implications of *PhPDR2* in abiotic stress responses, we analyzed its transcript levels in response to abscisic acid (ABA), a phytohormone involved in water stress, the auxin analogue 1-naphthaleneacetic acid (NAA), the osmotic stress inducer mannitol, and sodium chloride, causing salt stress (Figure 3B). *PhPDR2* transcripts accumulated markedly in seedling roots and shoots treated with MJA, suggesting an involvement in herbivore defense. However, in mature plants, this induction was not observed anymore (Supplemental Figure 4 D-G). NtPDR5, previously reported to be involved in herbivore defense, was reported to be induced similarly upon JA treatment, but also upon mechanical wounding or application of oral secretion of *Manduca sexta* larvae, a Solanaceae specialist (Bienert et al. 2012). The transcriptional response of *PhPDR2* to the aforementioned treatments was investigated and it was found that *PhPDR2* is not responsive to mechanical wounding or to the application of *M. sexta* oral secretion (Supplemental Figure 4E-G).

pdr2 lines are less toxic to caterpillars
For functional analysis of PhPDR2, Petunia hybrida W115 plants were transformed with a PhPDR2-RNAi construct. The three PhPDR2-RNAi lines pdr2\(^1\), pdr2\(^2\), and pdr2\(^3\), displaying high to moderate PhPDR2 transcript silencing, were chosen for further analysis (Figure 5A). To test the hypothesis that PhPDR2 is involved in herbivore defense, caterpillars of the generalist herbivore Spodoptera littoralis were fed on pdr2 leaves and on the respective wild-type leaves. Larval mortality and larval weight were monitored for larvae initially displaying the same average weight. Larval mortality rates were lower for larvae feeding on pdr2 lines at all examined time points (Figure 5B) and from day 9 until day 13 of feeding, significantly higher average weight was measured for larvae feeding on pdr2 leaves as compared to such feeding on wild-type leaves (Figure 5C). For example on day 13, chances of survival were nine times higher on pdr2 than on wild-type leaves, and larval weight was 3.8 fold higher.

Decreased metabolite contents in pdr2 lines

PDR proteins related to PhPDR2 have been shown to be involved in sclareol transport (Jasinski et al. 2001; Kang et al. 2011). PhPDR2, however, did not show a transcriptional response to sclareol and pdr2 lines did not show an increased susceptibility to sclareol as compared to wild-type (Supplemental Figure 5), making implications of PhPDR2 in sclareol transport unlikely.

Instead of testing of additional single substrates, we decided to undertake an untargeted metabolomics profiling for PhPDR2 substrate identification. Briefly, pdr2 and wild-type leaves were incubated in an organic solvent mixture, concentrated, and analyzed using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HR-MS). Unsupervised principal component analysis revealed
fifteen conspicuous candidate masses with MS signal intensities lower than 50% in two or more pdr2 lines compared to the wild type. In order to improve the tracking of reduced metabolites, a two-group processing with the XCMS platform (see methods) was used and included feature detection, retention time correction, alignment, annotation and statistical analysis (Tautenhahn et al. 2012). Data obtained revealed 57 features with fold ≤ 0.66, P-values ≤ 0.01, and intensities ≥ 1,000. Grouping the features, considering their accurate masses, and generating chemical formulae allowed the attribution of 28 of them to 11 petuniasterone and petuniolide derivatives (Table 1, Supplemental Table 1).

The structures of the most abundant plant steroids were further confirmed by MS/MS in comparison with data obtained from reference petuniasterone A (Figure 6, Supplemental Figure 6). The compounds detected are present in several Petunia species, among them Petunia hybrida (Elliger et al. 1988a; Elliger et al. 1989a; Elliger et al. 1989b) and exhibit a strong insecticide activity. Furthermore, the XCMS processing revealed 29 features corresponding to 18 reduced metabolites that could not be identified so far (Supplemental Table 2).

To investigate whether the reduction of the steroidal compounds in pdr2 lines was specific or if secondary metabolite levels in general were lower, we decided to further quantify a quercetin and a kaempferol galactopyranosides, two flavonoids that are well investigated in petunia (Zerback et al. 1989). Both were detected in similar amounts in pdr2 and wild type, suggesting that the lower amounts of petuniasterones and petuniolides in pdr2 lines were a specific effect (Table 1, Supplemental Table 1).

Finally, the relative concentrations of ca. 50 different plant steroids that have been characterized in several Petunia species, such as P. hybrida, P. integrifolia, P. inflata, P. axillaris, and P. parodii were estimated. Because some of them share the same
chemical formula, 37 extracted ion chromatograms (EICs) were calculated out of the
UHPLC-HR-ESI-MS data. This data processing allowed for the detection of 62.2% of
reported petuniasterone and petuniolide derivatives, whereof 65.2% were of lower
intensities in pdr2 leaves compared to wild-type leaves (Supplemental Table 2).

To test whether differential petuniolide and petuniasterone contents between wild-type
and pdr2 were reflected on the whole leaf level we performed UHPLC-HR-M-based
quantification on the inner leaf lamina and leaf margins. Leaf margins were assessed
separately since they showed a strong PhPDR2-Promoter GUS signal. Congruent with
findings for trichomes (Table 1), petuniolides A, C, E were highly abundant and were
found at significantly lower amounts in pdr2 lines as compared to the wild-type (p <
0.0005). The less abundant petuniolides F1-4 were also significantly reduced in pdr2 (p
< 0.0005) compared to wild type samples, a trend also observed for petuniasterones A
acetate, G1/G2, and l/P3 (Figure 7, Supplemental Figure 7). The two orders of
magnitude difference in signal intensities between petuniolide E and petuniasterone H in
whole leaf extracts were consistent with the findings for trichome extracts (Supplemental
table 1). Interestingly, levels of the highest abundant petuniasterone, petuniasterone
L/R, did not differ between pdr2 and wild type samples, indicating an accumulation
independent of PhPDR2 (Figure 7).

Petuniolide A was significantly more abundant in the marginal areas for both wild type (p
= 0.01) and pdr2 (p = 0.006), when compared to inner leaf lamina. For the other
petuniolides, the differences between inner leaf lamina and leaf margin were not
significant in the wild type, while they were significant in pdr2 (p < 0.01). The different
Petuniolid A distribution observed in leaf lamina and margins might be dependent on
differences in trichome abundance or PhPDR2 expression patterns, as PhPDR2 is
expressed in both cell types. Therefore we quantified trichome density in leaf lamina and margins, both on adaxial and abaxial sides. No significant differences in trichome density were scored (521 +/- 95 adaxial lamina; 764 +/- 162 abaxial lamina; 850 +/- 142 adaxial margin; 925 +/- 147 abaxial margin; n=12. P value adaxial lamina to margin = 0.08; p value abaxial lamina to margin = 0.47). Therefore we suggest that PhPDR2 expression at the leaf borders is responsible for the higher accumulation of steroidal compounds at the margins, compatible with PhPDR2 function against herbivore attacks.
Discussion

PhPDR2 is a PDR/ABCG protein expressed in glandular trichomes of leaves and stem

Toxic or deterrent secondary metabolites have been recognized as important means for herbivory defense (Schilmiller et al. 2008) and they are commonly found in high concentrations at exposed sites, such as the heads of glandular trichomes (Shroff et al. 2008; Weinhold and Baldwin 2011) and leaf margins (Schweizer et al. 2013).

Postulating functional implications of primary active secondary metabolite transport to build up and maintain concentration gradients across membranes at glandular trichomes, we decided to screen for PDR transporters of petunia (Supplemental Figure 1) that are preferentially expressed in trichomes.

Four new petunia PDR sequences were identified and brought into phylogenetic context with characterized members of the PDR subclass (Figure 1), revealing the absence of close homologues for PhPDR2. PhPDR2 is a typical PDR/full-size ABCG protein featuring a reverse domain orientation (Supplemental Figure 3B) and localizing to the plasma membrane (Figure 2). Distinct expression of *PhPDR2* in leaf borders and trichomes was demonstrated by RT-PCR (Figure 4A) and GUS reporter studies (Figure 4). Congruence of both approaches suggest that the promoter region used correctly targets *PhPDR2* expression. *PhPDR2* is expressed in all stalk cells of the trichome (Figure 4 C-D). Collectively this data points towards a contribution of PhPDR2 in the export of substances from trichomes into the apoplastic space, possibly enhanced in proximity to the glandular head.

A role for PhPDR2 in herbivory
To date, NtPDR5 is the only plant transporter reportedly involved in herbivore defense. Similar to pdr2, Ntpdr5 plants are more susceptible to herbivore feeding (Bienert et al. 2012). However, unlike PhPDR2, NtPDR5 is induced in leaf tissue upon mechanical wounding, application of Manduca sexta oral secretion or feeding (Supplemental Figure 4)(Bienert et al. 2012). The differences in expression of PhPDR2 and NtPDR5, as well as their distant phylogenetic relationship (Figure 1, Supplemental Figure 2), suggest deviating roles in defense responses. The expression pattern of PhPDR2 suggests an involvement as a constitutive and unspecific component as a first line of defense in trichomes and the leaf borders. Though upregulated by JA at the seedling stage, PhPDR2 is unresponsive to chemical or mechanical feeding stimuli. NtPDR5 on the other hand appears to be part of an inducible defense strategy that works locally at sites of attack. Our results underline the importance of active transport of secondary metabolites across trichome cells in plant defense against herbivores.

Insecticidal petuniasterone and petuniolide contents are lower in pdr2 lines

A first attempt to identify potential substrates of PhPDR2 involved a targeted approach. Close relatives of PhPDR2 have been implicated in terpenoid or sclareol transport (Jasinski et al. 2001; van den Brule et al. 2002; Campbell et al. 2003; Crouzet et al. 2013). However, we could not observe a difference between wild-type and pdr2 lines in various sclareol assays (Supplemental Figure 5). Metabolite contents of wild-type and pdr2 lines were analyzed with UHPLC-HR-MS and revealed the presence of several secondary metabolites reduced in pdr2 lines, among them many steroidal compounds (Table 1, Supplemental Tables 1 and 2). The levels of two flavonoids remained unchanged, corroborate the specificity of pdr2 involvement in steroidal compound
transport (Table 1, Supplemental Table 1). The accurate masses and the resulting chemical formulae of several candidates are corresponding to petuniasterones and petuniolides, both steroidal compounds (Table 1, Supplemental Tables 1 and 2). MS/MS confirmed their structures, in particular comparison of the fragmentation pattern of extracted petuniasterone A acetate with petuniasterone A reference material (Supplemental Figure 6).

Petuniasterones were first identified 1988 in petunia leaves (Elliger et al. 1988b; Elliger et al. 1989a) within a screen for substances exhibiting toxicity to insect larvae. These compounds contained a ketone moiety at the A-ring, and were therefore termed petuniasterones (Supplemental Table 1). Later, the structure of a second class of steroidal compounds with a spiro-lactone A-ring was described and called petuniolides (Supplemental Table 1).

Petuniasterones with a linear side chain (e.g. petuniasterone H, Supplemental Figure 6) are not toxic to insects, whereas orthoester derivatives (e.g. petuniasterone A) are toxic against a wide variety of caterpillars, among them the Solanaceae specialist Manduca sexta, or the Spodoptera sp. generalists (Elliger and Waiss 1991). In our experiments, we find both, petuniasterones with linear and orthoester side chains to be present in lower amounts in pdr2 lines. Petuniolides typically have an orthoester side chain, and a rearranged sterol backbone containing lactone ring. In general, petuniolides are about 10-fold more toxic than petuniasterones (Elliger and Waiss 1991). A possible mode of action was proposed for petuniolides C and D, which were shown to be weak ligands of rat brain GABA receptors (Isman et al. 1998). Cockroaches with a mutated GABA receptor were less susceptible to various insecticides and displayed elevated resistance against petuniolides (Isman et al. 1998).
We found several petuniolides and petuniasterones with high intensity to be significantly reduced in pdr2 lines (Table 1), irrespective of the sampling method (for trichomes, see Table 1, for leaf lamina and leaf margins, see Figure 7 and Supplemental Figure 7). Trichomes, major sites of PhPDR2 expression (Figure 4B-D), are recognized to play an important role in herbivore defense (Wang et al. 2001; Yazaki 2006; Schilmiller et al. 2008; Slocombe et al. 2008; Loreto et al. 2014). Leaf margins also express PhPDR2 (Figure 4A), and they were also reported to have insecticidal properties. In Arabidopsis, specific accumulation of insecticidal glucosinolate in leaf margins has been reported (Schweizer et al. 2013). The same report identified leaf margins as preferential feeding sites of S. littoralis once the glucosinolate biosynthesis was impaired. Most of the petuniolides and petuniasterones were indeed found to be more abundant in the leaf margins as compared to the inner leaf lamina though in the wild type the differences were significant only for petuniolide A (Figure 7, Supplemental Figure 7). The high abundance of petuniolides A, C, and E in leaf margins might be implicated in warding off generalists like S. littoralis that tend to prefer to feed on the margins if they are not particularly protected. Thus the function of petuniolides in petunia would be similar to the observed function of glucosinolate in leaf margins of Arabidopsis (Schweizer et al. 2013). Indeed, we found that S. littoralis feeding on pdr2 leaves to gain weight faster and to survive better than larvae feeding on wild type leaves (Figure 6). As both, petuniasterone and petuniolide levels are reduced in pdr2 lines; larvae feeding on pdr2 leaves ingest less toxic compounds per unit leaf material.

Petuniolide C was suggested to be the most relevant substance in P. parodii because of its high toxicity and abundance (Elliger and Waiss 1991) (Dereeper et al. 2008). We also identified petuniolide C in our samples, although in lower amounts than petuniolide A or
E (Supplemental Figure 7). Given their high abundance and toxicity and their high decrease in pdr2, however, these three compounds are likely the main contributors to the observed herbivory phenotype. The contrast to published data could be due to different metabolite abundance in P. hybrida, or due to the slightly different growth condition or extraction methods. Although most petuniasterones and petuniolides were reduced in pdr2 lines, not all levels were lower in pdr2 lines (Supplemental Table 2, Figure 7), which could indicate a specificity of PhPDR2 for selected molecules or precursors. Also, not all reported petuniasterones and petuniolides were identified in our experiments, and it should be kept in mind that besides masses corresponding to known petuniasterones and petuniolides, around 18 further down-regulated components were present in lower amounts in pdr2 lines (Supplemental Table 2). The corresponding chemical formulae have not been described for petunia so far and the structures could not be elucidated with MS/MS experiments. Therefore we cannot exclude that some of them may also be involved in PhPDR2-mediated herbivore resistance of petunia.

To address exact function of PhPDR2 expression around emerging lateral roots and in floral reproductive tissues (Figure 4 F-H) additional studies are needed. It is possible that petuniolides are exuded in the rhizosphere to protect emerging later roots from belowground herbivory, however in the case of the stigma, exudation of insecticidal compounds would be highly detrimental for an insect-pollinated plant such as petunia.

Petuniasterones and petuniolides have a sterol backbone. Sterol transporters were first identified in humans and yeast. Heterodimers of human ABCG5 and ABCG8 are responsible for cholesterol and phytosterol export from the liver to the bile (Klett and Patel 2003; Moitra et al. 2011; Tarling et al. 2013) and mutations in either cause sitosterolesima, a disease characterized by the failure of cholesterol and phytosterol
excretion (Wittenburg and Carey 2002). About half of the 20 characterized ABC members of humans are involved in transport of lipids or lipid-derived compounds, and the proteins are either localized in the plasma membrane or in endosomal compartments (Tarling et al. 2013). Similarly in yeast, ABCG proteins have been reported to be involved in cholesterol, phytosterol, and ergosterol transport, the latter being a structural sterol (Li 2004; Jungwirth and Kuchler 2006; Cabrito et al. 2011). In Arabidopsis thaliana, ABCG9 and ABCG31 were very recently reported to be involved in steryl-glycoside deposition in pollen (Choi et al. 2014). The finding that a large number of ABCG-type ABC transporters is likely to act as sterol transporters supports the hypothesis of PhPDR2 being a sterol transporter involved in the export of petuniasterones and petuniolides. However, due to the fact that these compounds are not commercially available we were unable to provide direct proof via transport assays. A further obstacle in directly demonstrating transport activity is the hydrophobicity of these compounds, which is the reason, why direct evidence was also not provided for other Arabidopsis transporting lipidic compounds.

We conclude that Petunia hybrida PhPDR2 is a trichome and leaf-margin-localized plasma-membrane intrinsic protein with a major role in herbivore defense against generalist feeders. Considering demonstrated affinities of ABCG transporters for steroidal compounds across kingdoms and the finding that downregulation of PhPDR2 is associated with reduced amounts of petuniasterones and petuniolides we postulate that PhPDR2 is involved in the export of steroidal, insecticidal compounds.
Acknowledgements

We thank Christian Gübeli for technical support, and Prof. Ian Baldwin from the Max Planck Institute for Chemical Ecology in Jena, Germany for the supply of *Manduca sexta* oral secretion. This work was supported by the Swiss National Foundation within the NCCR Plant Survival.

GenBank accession number

BankIt1891159 PHPDR2 KU665392

Author contributions

References

Figure legends

Figure 1. Phylogeny of Ph-PDR sequences
Phylogeny of Petunia hybrida PDR2 – PDR5 fragments (blue) and the respective fragments, identified by sequence similarity, of reported PDR sequences of Arabidopsis thaliana (red), Nicotiana tabacum and N. plumbaginifolia (green), Spirodela polyrrhiza (black), rice (black), and Glycine max (black).

Figure 2. PDR2 localizes to the plasma membrane
Arabidopsis thaliana mesophyll protoplasts were transiently co-transformed with a 35S::GFP-PDR2 construct and the plasma membrane marker AHA2-RFP. (A) PDR2 GFP signal, (B) AHA2 RFP signal, (C) overlay of (A) and (B), (D), bright field image of the same cell shown in (A-C). Scale bar: 10 µm.

Figure 3. PDR2 is expressed in leaf and stem trichomes and it is induced by jasmonic acid
(A) Quantitative PCR for PDR2 in aboveground parts of 14-day-old seedlings and in different organs of a 2-month-old plant. Abbreviations: seedling (Seedl), flower (Flow), leaf margin (L mar) and leaf inner part (L inn), leaf devoid of trichomes (L – T), and trichomes (Trich). (B) Quantitative PDR2 PCR in 24-day-old seedling root (light grey) and shoot (dark grey) treated with water, salicylic acid (SA), methyl jasmonate (MJA), abscisic acid (ABA), auxin (NAA), yeast extract (Yex), mannitol (Man), and sodium chloride (NaCl). (A, B) Data are depicted as means ± SE of three technical replicates of one representative biological sample.
Figure 4. Tissue-specific expression of PDR2

GUS expression of a two-month-old W115 PDR2::GUS in leaf (A), in leaf trichomes (B, C), in stem trichomes (D), in the main root (E), and in a flower (F). Scale bars are 1 mm. No background staining was observed in plants not expressing GUS using the same conditions as for GUS expressing plants.

Figure 5. Spodoptera littoralis feeding on pdr2 and wild type plants

(A) Quantitative PCR shows downregulation of PDR2 in pdr2 lines compared to wild type. (B, C) Spodoptera littoralis second instar larvae feeding experiments over 16 days on 3-month-old pdr2 lines 1-3 (grey bars and symbols) or on wild type (white bars and symbols). Depicted are weight gain over time (B, means ± SE, 30 biological replicates, α = 0.05) or as survival rate over time (C). The experiments shown are representatives for three experiments performed.

Figure 6. Petuniasterone MS/MS studies. MS/MS peaks and predicted corresponding fragment structures for Petuniolide E, a toxic steroidal compound found at lower concentrations in pdr2 lines.

Figure 7. Relative petuniolide and petuniasterone levels in leaves and leaf margins of wild type and pdr2 plants.

Petuniolide and petuniasterone amounts as detected by UHPLC HR-MS in wild type and pdr2 leaf lamina and margins (wt lamina, white; pdr2 lamina, grey; wt margin, light grey; pdr2 margin, dark grey). Values are expressed as means ± SE, n = 6 (* p < 0.05; ** p <
0.005; *** p < 0.0005). Values are normalized to wild type lamina levels. Absolute values are depicted in Supplemental Figure 7.
Figure 1:
Figure 2:
Figure 3:

A.

B.

Relative PDR2 expression

Seedl Root Stem Flow Leaf L mar L inn L - T Trich

 Relative PDR2 expression

con SA MJA Yex ABA NAA Man NaCl

shoot root
Figure 5:

A. Relative PDR3 expression

B. Larval survival rate

C. Larval weight [mg]
Figure 6:

MS/MS Petuniolide E (P+ = m/z 487)
Figure 7:

The figure shows a bar chart comparing fold change in Petuniolide and Petuniasterone levels in wild type (wt) and pdr2 leaves and margins. The bars are color-coded by condition: white for wt leaf, dark gray for pdr2 leaf, light gray for wt margin, and dark gray for pdr2 margin. Significant differences are indicated by asterisks (*, **, ***), with p values less than 0.05, 0.005, and 0.0005 respectively.
Supplemental Data:

Supplemental Methods

Additional PDR2 induction experiments: For mechanical wounding and M. sexta oral secret treatment, pPDR2-GUS W115 plants (see below) were pre-selected by Basta spraying and grown on soil for 4 - 6 weeks. Plants were wounded at the youngest fully unfolded leaf by forceps pressure or by a fabric pattern wheel (Kallenbach et al. 2012). For oral secret treatment, 20 µl of secret (kindly provided by I. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany), 33 mM MJA, or water was applied to the wounded parts of the leaf. After 24 h, plants were collected for GUS staining.

Sclareol phenotype assays: Three-week-old PPDR2-GUS plants grown on 0.5 MS + Suc plates were grown for further 24 h on 0.5 MS + Suc supplemented with 0, 100, or 500 µM sclareol to monitor if PDR2 was sclareol responsive. Subsequently, plants were stained (see GUS staining).

Wild type and PDR2 seeds were germinated on plates containing 0, 50, 250, or 500 µM sclareol and germination was scored after 11 days of growth (Campbell et al. 2003).

Wild type and PDR2 plants were grown for two weeks on 0.5 MS – Suc, or on plates additionally supplemented with 30 mg L⁻¹ Hygromycin, respectively. Subsequently, plants were transferred to 0.5 MS + Suc supplemented with 0, 100, 250, or 500 µM sclareol. Root length difference between day 0 and 6 on sclareol-containing plates was quantified and expressed as mean change of root length (Campbell et al. 2003).

Supplemental figure legends:

Supplemental Figure 1. PDR expression profile of petunia leaves and trichomes

PDR expression profile of petunia leaves and trichomes. Primers were designed to bind to the conserved Walker A and PDR signature 4 of second NBD. They were used to amplify fragments of PDR genes expressed in leaves and trichomes. A maximum likelihood tree is depicted for sequenced fragments, grouped according to similarity and
named in ascending numbers. The trichome or leaf symbol stands for the origin of the respective sequence.

Supplemental Figure 2. PhPDR phylogeny in comparison to other species

Maximum likelihood tree for 500 bp cDNA of PDR domains of *Petunia hybrida* (Ph, dark blue), *Oryza sativa* (Os, orange), *Arabidopsis thaliana* (At, red), *Nicotiana tabacum* (Nt, green), *Nicotiana plumbaginifolia* (Np, green), *Solanum lycopersicum* (Sl, light blue), *Spirodela polyrrhiza* (Sp, black), and *Glycine max* (Gm, black). Petunia sequences originate from amplification with primers aligning to Walker A domain and to PDR signature 4 on the second NBD. The same domain was identified in the sequences of non-Petunia species depicted by similarity search (Multalin tool). Probabilities are depicted as numbers at branching points. PDR clusters are annotated after Crouzet et al. 2005. Note that the fragment of *OsPDR1* is present in cluster IV rather than in cluster I decribed for the protein sequence. The *OsPDR14* pseudogene was excluded from the analysis, as well as *OsPDR23* and *OsPDR22* that did not contain the fragment of interest.

Supplemental Figure 3. Predicted structure of PDR2

(A) Genomic structure of PDR2, exons are depicted as boxes.

(B) PDR2 protein topology structure was predicted with ConPred II. Transmembrane domains (TMD) contain mainly hydrophobic (green circles) amino acids, whereas the nucleotide binding domains (NBD) contain additionally hydrophilic (blue), positive charged (red), and negatively charged (yellow) residues.
Supplemental Figure 4. Transcriptional responses of PhPDR2

A-C, Two-month-old, sterile-grown pPDR2-GUS plants were wounded (red squares) mechanically with a forceps (B) or a scissor (C). A, Negative control. (D), Relative PhPDR2 expression in two-month-old, greenhouse-grown W115 plants. Control leaves were sampled at the day of treatment (1) and collection (2). One leaf of three plants each were wounded with a fabric pattern wheel with subsequent application of water (3-5), or 33 mM MJa (6-8), and collected after 24 h. E-G, one-month-old, sterile-grown pPDR2-GUS plants were wounded with a fabric pattern wheel with subsequent application of water (E), 33 mM methyl jasmonate (F), or Manduca sexta oral secret (G). A-C, E-G, plants were GUS-stained after 24 h of incubation.

Supplemental Figure 5. Sclareol assays

a) Seedlings of a pPDR2-GUS line were grown on different sclareol concentrations for 24 h and stained for GUS activity. b) W115 and PDR2-RNAi plants were grown on plates with and without sclareol. Difference in root length is depicted as mean ± s.e.m. N = 15. c) Seeds of W115 and PDR2-RNAi plants were grown for 11 d on different sclareol concentrations. Number of germinated (white, grey) and non-germinated (black) seeds are depicted.

Supplemental Figure 6. Petuniasterone MS/MS studies.

MS/MS peaks and predicted corresponding fragment structures for the reference compound Petuniasterone A, as well as the detected compounds Petuniasterone A acetate, Petuniasterone H and Petuniolide E.
Supplemental Figure 7. Absolute petuniolide and petuniasterone levels in leaves and leaf margins of wild type and pdr2 plants.

Absolute peak intensities (AU, arbitrary units) of petuniolides and petuniasterones normalized by internal standard corticosterone and sample dry weight as detected by UHPLC HR-MS in wild type and pdr2 leaf lamina and margins (wt lamina, white; pdr2 lamina, grey; wt margin, light grey; pdr2 margin, dark grey). Values are expressed as means ± SE, n = 6 (* p < 0.05; ** p < 0.005; *** p < 0.0005). Relative amounts are depicted in Figure 7.
Supplemental figure 1:
Supplemental figure 2:
Supplemental figure 3:

A

B

TMD1

TMD2

NBD1

NBD2

cytosol

5' UTR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3' UTR
Supplemental figure 4:
Supplemental figure 5:

A

0 μM

100 μM

500 μM

B

Δ root growth (%)

μM Sclareol

W115

pdr2-1

pdr2-2

pdr2-3

C

number of plants

μM Sclareol

W115

pdr2-1

pdr2-2

pdr2-3
Supplemental figure 6:

MS/MS Petuniasos A reference (m/z 550, RT = 6.5 min)

MS/MS Petuniasos A acetate (m/z 601, RT = 6.5 min)

MS/MS Petuniasos H (m/z 521, RT = 4.8 min)

MS/MS Petuniasos E (m/z 487)
Supplemental figure 7:

![Graph showing the comparison of the intensity of various compounds in wt leaf, pdr2 leaf, wt margin, and pdr2 margin. The graph includes bars for different compounds labeled as acetate, G1/G2, H, I/P3, J, and L/R. The y-axis represents intensity in 10^6 AU/mg^2, and the x-axis represents different locations labeled A to L/R. The significance levels are indicated by asterisks: * (p < 0.05), ** (p < 0.005), *** (p < 0.0005).]}
Table 1. Petunioasterone and petuniolide content reduction in pools of pdr2 lines.

| Substance | Feature ID | Fold | p-value | m/±_exact | m/±_mass | Accuracy [ppm] | Chemical Formula | Rt_{det} (min) | Intensity | Adduct/Fragment
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petunioasterone</td>
<td>#416</td>
<td>0.17</td>
<td>9.71E-03</td>
<td>501.2845</td>
<td>501.2847</td>
<td>-0.9</td>
<td>C_{23}H_{27}O_{8}</td>
<td>4.86</td>
<td>9891</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>Petunioasterone</td>
<td>#32</td>
<td>0.28</td>
<td>1.75E-04</td>
<td>503.3001</td>
<td>503.3003</td>
<td>0.4</td>
<td>C_{23}H_{29}O_{8}</td>
<td>5.99</td>
<td>6384</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>Petunioasterone</td>
<td>#65</td>
<td>0.37</td>
<td>7.44E-04</td>
<td>443.3146</td>
<td>443.3156</td>
<td>2.3</td>
<td>C_{23}H_{29}O_{8}</td>
<td>4.22</td>
<td>6640</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>Petunioasterone</td>
<td>#33</td>
<td>0.40</td>
<td>1.99E-04</td>
<td>615.2970</td>
<td>615.2986</td>
<td>2.6</td>
<td>C_{23}H_{29}O_{8}</td>
<td>5.63</td>
<td>4144</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>Petunioasterone</td>
<td>#107</td>
<td>0.41</td>
<td>1.83E-03</td>
<td>615.2973</td>
<td>615.2986</td>
<td>2.2</td>
<td>C_{23}H_{29}O_{8}</td>
<td>5.25</td>
<td>1671</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>Perlacon C/D</td>
<td>#381</td>
<td>0.19</td>
<td>8.94E-03</td>
<td>535.3254</td>
<td>535.3265</td>
<td>2.2</td>
<td>C_{23}H_{27}O_{8}</td>
<td>4.59</td>
<td>1577</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>Petunioasterone</td>
<td>#44</td>
<td>0.20</td>
<td>3.35E-04</td>
<td>521.3458</td>
<td>521.3473</td>
<td>2.8</td>
<td>C_{23}H_{29}O_{8}</td>
<td>4.78</td>
<td>1402</td>
<td>[M+H]^+</td>
</tr>
</tbody>
</table>

Greenhouse-grown leaves were washed in buffer and metabolites were analyzed using the XCMS platform. List of substances with the feature ID assigned by XCMS analysis, as well as fold reduction and the p-value (data displayed is median of three pdr2 lines), the measured mass (m/±_exact), the mass accuracy, retention time (RT med), and intensity. Chemical formula and accuracy were calculate with the SmartFormula software. For steroids with more than one feature, the fold reduction, p-value and the sum of the intensities are given in addition. In addition to steroids, amounts of two flavonoids, Q-3-GluGal and K-3-GluGal (Quercetin 3-O-(2'-O-β-D-glucopyranosyl)-β-D-galactopyranoside and Kaempferol 3-O-(2'-O-β-D-glucopyranosyl)-β-D-galactopyranoside, respectively (Zerback et al. 1989) were analyzed. Analysis of unknown metabolites can be found in Supplemental Table 2.
Supplemental Table 1. Structure and amount of selected petuniasterone, petuniolide and flavonoid derivatives found in pdr2 and wild-type lines

<table>
<thead>
<tr>
<th>Compound and mass (m/z)</th>
<th>EIC</th>
<th>Box-Whisker Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petuniasterone A acetate (601.3197, [M+H]+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petuniasterone H (521.3473, [M+H]+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petuniolide E (487.3055, [M+H]+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-3-GluGal (609.1462, [M+H]+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-3-GluGal (625.1410, [M+H]+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extracted ion chromatograms (EICs) and Box-Whisker plots of selected metabolites found in wild-type (wt, black) and pdr2 (grey) lines of experiment 2, showing a reduction of petuniasterone and petuniolide contents and an unchanged intensity of flavonoids in pdr2 lines. Structures were drawn according to literature (Elliger et al. 1988a; Elliger et al. 1989a; Zerback et al. 1989; Elliger and Waiss 1991). Q-3-GluGal: Quercetin 3-O-(2''-O-β-D-glucopyranosyl)-β-D-galactopyranoside. K-3-GluGal: Kaempferol 3-O-(2''-O-β-D-glucopyranosyl)-β-D-galactopyranoside (Zerback et al. 1989).
Supplemental Table 2: XCMS analysis of content reduction of unknowns metabolites in pdr2 lines

<table>
<thead>
<tr>
<th>Substance</th>
<th>Feature ID</th>
<th>Fold(1)</th>
<th>p-value (≤ 0.01)</th>
<th>m/z exact</th>
<th>m/z theor</th>
<th>Accuracy [ppm]</th>
<th>Chemical Formula</th>
<th>Rt (min)</th>
<th>Intensity (≥ 1000)</th>
<th>Adduct / Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>#6</td>
<td>0.43</td>
<td>1.09E-05</td>
<td>481.2951</td>
<td></td>
<td>5.63</td>
<td>2878</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#131</td>
<td>0.38</td>
<td>2.52E-03</td>
<td>421.2734</td>
<td></td>
<td>5.64</td>
<td>1970</td>
<td>[M+H+AcOH]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.42</td>
<td></td>
<td>1.27E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4848 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>#110</td>
<td>0.47</td>
<td>1.84E-03</td>
<td>547.3255</td>
<td></td>
<td>5.46</td>
<td>1282</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#109</td>
<td>0.47</td>
<td>1.84E-03</td>
<td>547.3255</td>
<td></td>
<td>5.46</td>
<td>1282</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.43</td>
<td></td>
<td>1.98E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2520 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>#146</td>
<td>0.47</td>
<td>2.85E-03</td>
<td>265.1597</td>
<td></td>
<td>6.26</td>
<td>1506</td>
<td>[M+H+AcOH]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#277</td>
<td>0.42</td>
<td>6.39E-03</td>
<td>325.1795</td>
<td></td>
<td>6.26</td>
<td>10508</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.44</td>
<td></td>
<td>4.62E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12014 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>#25</td>
<td>0.33</td>
<td>1.37E-04</td>
<td>1162.6822</td>
<td></td>
<td>5.83</td>
<td>1929</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#418</td>
<td>0.13</td>
<td>9.75E-03</td>
<td>1032.6404</td>
<td></td>
<td>5.83</td>
<td>1920</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.19</td>
<td></td>
<td>4.95E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3849 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>#199</td>
<td>0.41</td>
<td>4.23E-03</td>
<td>465.3008</td>
<td></td>
<td>6.25</td>
<td>5654</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#267</td>
<td>0.43</td>
<td>6.10E-03</td>
<td>405.2790</td>
<td></td>
<td>6.25</td>
<td>4836</td>
<td>[M+H+AcOH]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.42</td>
<td></td>
<td>5.17E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10490 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>#179</td>
<td>0.39</td>
<td>3.50E-03</td>
<td>285.1478</td>
<td></td>
<td>5.23</td>
<td>1001</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#313</td>
<td>0.43</td>
<td>7.15E-03</td>
<td>575.2667</td>
<td></td>
<td>5.23</td>
<td>4688</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#296</td>
<td>0.42</td>
<td>6.80E-03</td>
<td>592.2931</td>
<td></td>
<td>5.23</td>
<td>25719</td>
<td>[M+NH₄]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#286</td>
<td>0.44</td>
<td>6.50E-03</td>
<td>597.2485</td>
<td></td>
<td>5.23</td>
<td>4285</td>
<td>[M+Na]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.42</td>
<td></td>
<td>5.99E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>35693 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>#239</td>
<td>0.20</td>
<td>5.39E-03</td>
<td>575.3023</td>
<td></td>
<td>4.22</td>
<td>1292</td>
<td>[M+H₂O]⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#406</td>
<td>0.21</td>
<td>9.48E-03</td>
<td>593.3129</td>
<td></td>
<td>4.22</td>
<td>1943</td>
<td>[M+H₂O]⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#344</td>
<td>0.17</td>
<td>7.93E-03</td>
<td>611.3238</td>
<td></td>
<td>4.22</td>
<td>14396</td>
<td>[M+H]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#401</td>
<td>0.20</td>
<td>9.41E-03</td>
<td>628.3502</td>
<td></td>
<td>4.22</td>
<td>4940</td>
<td>[M+NH₄]+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg:</td>
<td>0.19</td>
<td></td>
<td>8.05E-03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>22571 = Σ intensities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The description of the experiment can be found in Table 1. Metabolites with intensities >1000 and a significant reduction are displayed in order of decreasing p-value.
Supplemental table 3: characteristics of metabolites quantified in leaf extracts

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>t_R</th>
<th>EICs considered for Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petuniasterone A acetate</td>
<td>9.14</td>
<td>601.3194, 618.3459 [M+NH$_4^+$], 623.3013 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniolide F1</td>
<td>7.83</td>
<td>503.3003 [M+H]$^+$, 520.3269 [M+NH$_4^+$], 525.2823 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniolide F2</td>
<td>7.07</td>
<td>503.3003 [M+H]$^+$, 520.3269 [M+NH$_4^+$], 525.2823 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniolide F3</td>
<td>7.30</td>
<td>503.3003 [M+H]$^+$, 520.3269 [M+NH$_4^+$], 525.2823 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniolide F4</td>
<td>7.20</td>
<td>503.3003 [M+H]$^+$, 520.3269 [M+NH$_4^+$], 525.2823 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniolide A</td>
<td>7.78</td>
<td>461.3262 [M+H]$^+$</td>
</tr>
<tr>
<td>Petuniasterone H</td>
<td>7.36</td>
<td>521.3473 [M+H]$^+$, 543.3292 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniasterone I/P3</td>
<td>6.57</td>
<td>633.3092 [M+H]$^+$</td>
</tr>
<tr>
<td>Petuniasterone I/P3</td>
<td>7.91</td>
<td>633.3092 [M+H]$^+$, 650.3357 [M+NH$_4^+$], 655.2911 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniasterone L/R</td>
<td>7.97</td>
<td>615.2986 [M+H]$^+$, 632.3252 [M+NH$_4^+$], 637.2806 [M+Na]$^+$</td>
</tr>
<tr>
<td>Petuniasterone L/R</td>
<td>8.06</td>
<td>597.2867 [M+H–H$_2$O]$^+$, 615.2986 [M+H]$^+$, 632.3252 [M+NH$_4^+$], 637.2806 [M+Na]$^+$</td>
</tr>
<tr>
<td>Perulactone C/D</td>
<td>–</td>
<td>535.3265 [M+H]$^+$, not detected</td>
</tr>
</tbody>
</table>

*) Only one Petuniasterone G could be detected

71