Header

UZH-Logo

Maintenance Infos

In vivo performance and properties of tamoxifen metabolites for CreERT2 control


Felker, Anastasia; Nieuwenhuize, Susan; Dolbois, Aymeric; Blazkova, Kristyna; Hess, Christopher; Low, Larry W L; Burger, Sibylle; Samson, Natasha; Carney, Tom J; Bartunek, Petr; Nevado, Cristina; Mosimann, Christian (2016). In vivo performance and properties of tamoxifen metabolites for CreERT2 control. PLoS ONE, 11(4):e0152989.

Abstract

Mutant Estrogen Receptor (ERT2) ligand-binding domain fusions with Cre recombinase are a key tool for spatio-temporally controlled genetic recombination with the Cre/lox system. CreERT2 is efficiently activated in a concentration-dependent manner by the Tamoxifen metabolite trans-4-OH-Tamoxifen (trans-4-OHT). Reproducible and efficient Cre/lox experimentation is hindered by the gradual loss of CreERT2 induction potency upon prolonged storage of dissolved trans-4-OHT, which potentially results from gradual trans-to-cis isomerization or degradation. Here, we combined zebrafish CreERT2 recombination experiments and cell culture assays to document the gradual activity loss of trans-4-OHT and describe the alternative Tamoxifen metabolite Endoxifen as more stable alternative compound. Endoxifen retains potent activation upon prolonged storage (3 months), yet consistently induces half the ERT2 domain fusion activity compared to fresh trans-4-OHT. Using 1HNMR analysis, we reveal that trans-4-OHT isomerization is undetectable upon prolongedstorage in either DMSO or Ethanol, ruling out isomer transformation as cause for the gradual loss of trans-4-OHT activity. We further establish that both trans-4-OHT and Endoxifen are insensitive to light exposure under regular laboratory handling conditions. We attribute the gradual loss of trans-4-OHT potency to precipitation over time, and show that heating of aged trans-4-OHT aliquots reinstates their CreERT2 induction potential. Our data establish Endoxifen as potent and reproducible complementary compound to 4-OHT to control ERT2 domain fusion proteins in vivo, and provide a framework for efficient chemically controlled
recombination experiments.

Abstract

Mutant Estrogen Receptor (ERT2) ligand-binding domain fusions with Cre recombinase are a key tool for spatio-temporally controlled genetic recombination with the Cre/lox system. CreERT2 is efficiently activated in a concentration-dependent manner by the Tamoxifen metabolite trans-4-OH-Tamoxifen (trans-4-OHT). Reproducible and efficient Cre/lox experimentation is hindered by the gradual loss of CreERT2 induction potency upon prolonged storage of dissolved trans-4-OHT, which potentially results from gradual trans-to-cis isomerization or degradation. Here, we combined zebrafish CreERT2 recombination experiments and cell culture assays to document the gradual activity loss of trans-4-OHT and describe the alternative Tamoxifen metabolite Endoxifen as more stable alternative compound. Endoxifen retains potent activation upon prolonged storage (3 months), yet consistently induces half the ERT2 domain fusion activity compared to fresh trans-4-OHT. Using 1HNMR analysis, we reveal that trans-4-OHT isomerization is undetectable upon prolongedstorage in either DMSO or Ethanol, ruling out isomer transformation as cause for the gradual loss of trans-4-OHT activity. We further establish that both trans-4-OHT and Endoxifen are insensitive to light exposure under regular laboratory handling conditions. We attribute the gradual loss of trans-4-OHT potency to precipitation over time, and show that heating of aged trans-4-OHT aliquots reinstates their CreERT2 induction potential. Our data establish Endoxifen as potent and reproducible complementary compound to 4-OHT to control ERT2 domain fusion proteins in vivo, and provide a framework for efficient chemically controlled
recombination experiments.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

22 downloads since deposited on 12 Jan 2017
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:14 April 2016
Deposited On:12 Jan 2017 11:24
Last Modified:08 Dec 2017 22:07
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0152989
PubMed ID:27077909

Download

Download PDF  'In vivo performance and properties of tamoxifen metabolites for CreERT2 control'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)