Header

UZH-Logo

Maintenance Infos

Vertebral compression fractures after stereotactic body radiation therapy: a large, multi-institutional, multinational evaluation


Jawad, Maha Saada; Fahim, Daniel K; Gerszten, Peter C; Flickinger, John C; Sahgal, Arjun; Grills, Inga S; Sheehan, Jason; Kersh, Ronald; Shin, John; Oh, Kevin; Mantel, Frederick; Guckenberger, Matthias; Elekta Spine Radiosurgery Research Consortium (2016). Vertebral compression fractures after stereotactic body radiation therapy: a large, multi-institutional, multinational evaluation. Journal of Neurosurgery. Spine, 24(6):928-936.

Abstract

OBJECTIVE The purpose of this study was to identify factors contributing to an increased risk for vertebral compression fracture (VCF) following stereotactic body radiation therapy (SBRT) for spinal tumors. METHODS A total of 594 tumors were treated with spinal SBRT as primary treatment or re-irradiation at 8 different institutions as part of a multi-institutional research consortium. Patients underwent LINAC-based, image-guided SBRT to a median dose of 20 Gy (range 8-40 Gy) in a median of 1 fraction (range 1-5 fractions). Median patient age was 62 years. Seventy-one percent of tumors were osteolytic, and a preexisting vertebral compression fracture (VCF) was present in 24% of cases. Toxicity was assessed following treatment. Univariate and multivariate analyses were performed using a logistic regression method to determine parameters predictive for post-SBRT VCF. RESULTS At a median follow-up of 10.1 months (range 0.03-57 months), 80% of patients had local tumor control. At the time of last imaging follow-up, at a median of 8.8 months after SBRT, 3% had a new VCF, and 2.7% had a progressive VCF. For development of any (new or progressive) VCF following SBRT, the following factors were predictive for VCF on univariate analysis: short interval from primary diagnosis to SBRT (less than 36.8 days), solitary metastasis, no additional bone metastases, no prior chemotherapy, preexisting VCF, no MRI used for target delineation, tumor volume of 37.3 cm(3) or larger, equivalent 2-Gy-dose (EQD2) tumor of 41.8 Gy or more, and EQD2 spinal cord Dmax of 46.1 Gy or more. Preexisting VCF, solitary metastasis, and prescription dose of 38.4 Gy or more were predictive on multivariate analysis. The following factors were predictive of a new VCF on univariate analysis: solitary metastasis, no additional bone metastases, and no MRI used for target delineation. Presence of a solitary metastasis and lack of MRI for target delineation remained significant on multivariate analysis. CONCLUSIONS A VCF following SBRT is more likely to occur following treatment for a solitary spinal metastasis, reflecting a more aggressive treatment approach in patients with adequately controlled systemic disease. Higher prescription dose and a preexisting VCF also put patients at increased risk for post-SBRT VCF. In these patients, pre-SBRT cement augmentation could be considered to decrease the risk of subsequent VCF.

Abstract

OBJECTIVE The purpose of this study was to identify factors contributing to an increased risk for vertebral compression fracture (VCF) following stereotactic body radiation therapy (SBRT) for spinal tumors. METHODS A total of 594 tumors were treated with spinal SBRT as primary treatment or re-irradiation at 8 different institutions as part of a multi-institutional research consortium. Patients underwent LINAC-based, image-guided SBRT to a median dose of 20 Gy (range 8-40 Gy) in a median of 1 fraction (range 1-5 fractions). Median patient age was 62 years. Seventy-one percent of tumors were osteolytic, and a preexisting vertebral compression fracture (VCF) was present in 24% of cases. Toxicity was assessed following treatment. Univariate and multivariate analyses were performed using a logistic regression method to determine parameters predictive for post-SBRT VCF. RESULTS At a median follow-up of 10.1 months (range 0.03-57 months), 80% of patients had local tumor control. At the time of last imaging follow-up, at a median of 8.8 months after SBRT, 3% had a new VCF, and 2.7% had a progressive VCF. For development of any (new or progressive) VCF following SBRT, the following factors were predictive for VCF on univariate analysis: short interval from primary diagnosis to SBRT (less than 36.8 days), solitary metastasis, no additional bone metastases, no prior chemotherapy, preexisting VCF, no MRI used for target delineation, tumor volume of 37.3 cm(3) or larger, equivalent 2-Gy-dose (EQD2) tumor of 41.8 Gy or more, and EQD2 spinal cord Dmax of 46.1 Gy or more. Preexisting VCF, solitary metastasis, and prescription dose of 38.4 Gy or more were predictive on multivariate analysis. The following factors were predictive of a new VCF on univariate analysis: solitary metastasis, no additional bone metastases, and no MRI used for target delineation. Presence of a solitary metastasis and lack of MRI for target delineation remained significant on multivariate analysis. CONCLUSIONS A VCF following SBRT is more likely to occur following treatment for a solitary spinal metastasis, reflecting a more aggressive treatment approach in patients with adequately controlled systemic disease. Higher prescription dose and a preexisting VCF also put patients at increased risk for post-SBRT VCF. In these patients, pre-SBRT cement augmentation could be considered to decrease the risk of subsequent VCF.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:June 2016
Deposited On:12 Jan 2017 10:45
Last Modified:15 Jan 2017 06:40
Publisher:American Association of Neurological Surgeons
ISSN:1547-5646
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3171/2015.10.SPINE141261
PubMed ID:26895526

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations