Header

UZH-Logo

Maintenance Infos

Morphological spectrum of prenatal cerebellar disruptions


Poretti, A; Prayer, D; Boltshauser, E (2009). Morphological spectrum of prenatal cerebellar disruptions. European Journal of Paediatric Neurology, 13(5):397-407.

Abstract

There is increasing evidence that the cerebellum is susceptible to both prenatal infections and haemorrhages as well as being vulnerable in extremely preterm babies, but not to perinatal and postnatal hypoxic-ischaemic injuries. Starting with the imaging appearance we describe and illustrate a spectrum of prenatal cerebellar disruptions: cerebellar agenesis; unilateral cerebellar hypoplasia; unilateral cerebellar cleft; global cerebellar hypoplasia; vanishing cerebellum in myelomeningocele; and disruption of cerebellar development in preterm infants. We discuss neuroradiological characteristics, possible disruptive events, and clinical findings in the different morphological patterns. Remarkably, the same disruptive agent can cause different neuroradiological patterns, which appear likely to represent a morphological spectrum. The analysis of imaging patterns is crucial in recognising cerebellar disruptions. Recognition of cerebellar disruptions and their differentiation from cerebellar malformations is important in terms of diagnosis, prognosis, and genetic counselling.

Abstract

There is increasing evidence that the cerebellum is susceptible to both prenatal infections and haemorrhages as well as being vulnerable in extremely preterm babies, but not to perinatal and postnatal hypoxic-ischaemic injuries. Starting with the imaging appearance we describe and illustrate a spectrum of prenatal cerebellar disruptions: cerebellar agenesis; unilateral cerebellar hypoplasia; unilateral cerebellar cleft; global cerebellar hypoplasia; vanishing cerebellum in myelomeningocele; and disruption of cerebellar development in preterm infants. We discuss neuroradiological characteristics, possible disruptive events, and clinical findings in the different morphological patterns. Remarkably, the same disruptive agent can cause different neuroradiological patterns, which appear likely to represent a morphological spectrum. The analysis of imaging patterns is crucial in recognising cerebellar disruptions. Recognition of cerebellar disruptions and their differentiation from cerebellar malformations is important in terms of diagnosis, prognosis, and genetic counselling.

Statistics

Citations

34 citations in Web of Science®
40 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 04 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:04 Mar 2009 20:40
Last Modified:05 Apr 2016 12:58
Publisher:Elsevier
ISSN:1090-3798
Publisher DOI:https://doi.org/10.1016/j.ejpn.2008.09.001
PubMed ID:18945628

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations