Header

UZH-Logo

Maintenance Infos

New insights into the correlation structure of DSM-IV depression symptoms in the general population v. subsamples of depressed individuals


Foster, Simon; Mohler-Kuo, Meichun (2017). New insights into the correlation structure of DSM-IV depression symptoms in the general population v. subsamples of depressed individuals. Epidemiology and Psychiatric Sciences:Epub ahead of print.

Abstract

AIMS: Previous research failed to uncover a replicable dimensional structure underlying the symptoms of depression. We aimed to examine two neglected methodological issues in this research: (a) adjusting symptom correlations for overall depression severity; and (b) analysing general population samples v. subsamples of currently depressed individuals.
METHODS: Using population-based cross-sectional and longitudinal data from two nations (Switzerland, 5883 young men; USA, 2174 young men and 2244 young women) we assessed the dimensions of the nine DSM-IV depression symptoms in young adults. In each general-population sample and each subsample of currently depressed participants, we conducted a standardised process of three analytical steps, based on exploratory and confirmatory factor and bifactor analysis, to reveal any replicable dimensional structure underlying symptom correlations while controlling for overall depression severity.
RESULTS: We found no evidence of a replicable dimensional structure across samples when adjusting symptom correlations for overall depression severity. In the general-population samples, symptoms correlated strongly and a single dimension of depression severity was revealed. Among depressed participants, symptom correlations were surprisingly weak and no replicable dimensions were identified, regardless of severity-adjustment.
CONCLUSIONS: First, caution is warranted when considering studies assessing dimensions of depression because general population-based studies and studies of depressed individuals generate different data that can lead to different conclusions. This problem likely generalises to other models based on the symptoms' inter-relationships such as network models. Second, whereas the overall severity aligns individuals on a continuum of disorder intensity that allows non-affected individuals to be distinguished from affected individuals, the clinical evaluation and treatment of depressed individuals should focus directly on each individual's symptom profile.

Abstract

AIMS: Previous research failed to uncover a replicable dimensional structure underlying the symptoms of depression. We aimed to examine two neglected methodological issues in this research: (a) adjusting symptom correlations for overall depression severity; and (b) analysing general population samples v. subsamples of currently depressed individuals.
METHODS: Using population-based cross-sectional and longitudinal data from two nations (Switzerland, 5883 young men; USA, 2174 young men and 2244 young women) we assessed the dimensions of the nine DSM-IV depression symptoms in young adults. In each general-population sample and each subsample of currently depressed participants, we conducted a standardised process of three analytical steps, based on exploratory and confirmatory factor and bifactor analysis, to reveal any replicable dimensional structure underlying symptom correlations while controlling for overall depression severity.
RESULTS: We found no evidence of a replicable dimensional structure across samples when adjusting symptom correlations for overall depression severity. In the general-population samples, symptoms correlated strongly and a single dimension of depression severity was revealed. Among depressed participants, symptom correlations were surprisingly weak and no replicable dimensions were identified, regardless of severity-adjustment.
CONCLUSIONS: First, caution is warranted when considering studies assessing dimensions of depression because general population-based studies and studies of depressed individuals generate different data that can lead to different conclusions. This problem likely generalises to other models based on the symptoms' inter-relationships such as network models. Second, whereas the overall severity aligns individuals on a continuum of disorder intensity that allows non-affected individuals to be distinguished from affected individuals, the clinical evaluation and treatment of depressed individuals should focus directly on each individual's symptom profile.

Statistics

Altmetrics

Downloads

3 downloads since deposited on 13 Jan 2017
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:13 Jan 2017 08:49
Last Modified:07 Aug 2017 08:25
Publisher:Cambridge University Press
ISSN:2045-7960
Publisher DOI:https://doi.org/10.1017/S2045796016001086
PubMed ID:28067191

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 526kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations