Header

UZH-Logo

Maintenance Infos

Doxycycline, metronidazole and isotretinoin: Do they modify microRNA/mRNA expression profiles and function in murine T-cells? - Zurich Open Repository and Archive


Becker, Eugenia; Bengs, Susan; Aluri, Sirisha; Opitz, Lennart; Atrott, Kirstin; Stanzel, Claudia; Castro, Pedro A Ruiz; Rogler, Gerhard; Frey-Wagner, Isabelle (2016). Doxycycline, metronidazole and isotretinoin: Do they modify microRNA/mRNA expression profiles and function in murine T-cells? Scientific Reports, 6:37082.

Abstract

Inflammatory bowel disease (IBD) may develop due to an inflammatory response to commensal gut microbiota triggered by environmental factors in a genetically susceptible host. Isotretinoin (acne therapy) has been inconsistently associated with IBD onset and flares but prior treatment with antibiotics, also associated with IBD development, complicates the confirmation of this association. Here we studied in mice whether doxycycline, metronidazole or isotretinoin induce epigenetic modifications, and consequently change T-cell mRNA expression and/or function directly after treatment and after a 4 week recovery period. Isotretinoin induced IL-10 signaling in Tregs and naive T-cells directly after treatment and reduced effector T-cell proliferation alone and in co-culture with Tregs. Metronidazole activated processes associated with anti-inflammatory pathways in both T-cell subsets directly after the treatment period whereas doxycycline induced an immediate pro-inflammatory expression profile that resolved after the recovery period. Long-term changes indicated an inhibition of proliferation by doxycycline and induction of beneficial immune and metabolic pathways by metronidazole. Persistent alterations in microRNA and mRNA expression profiles after the recovery period indicate that all three medications may induce long-term epigenetic modifications in both T-cell subsets. Yet, our data do not support the induction of a long-term pro-inflammatory phenotype in murine Tregs and naive T-cells.

Abstract

Inflammatory bowel disease (IBD) may develop due to an inflammatory response to commensal gut microbiota triggered by environmental factors in a genetically susceptible host. Isotretinoin (acne therapy) has been inconsistently associated with IBD onset and flares but prior treatment with antibiotics, also associated with IBD development, complicates the confirmation of this association. Here we studied in mice whether doxycycline, metronidazole or isotretinoin induce epigenetic modifications, and consequently change T-cell mRNA expression and/or function directly after treatment and after a 4 week recovery period. Isotretinoin induced IL-10 signaling in Tregs and naive T-cells directly after treatment and reduced effector T-cell proliferation alone and in co-culture with Tregs. Metronidazole activated processes associated with anti-inflammatory pathways in both T-cell subsets directly after the treatment period whereas doxycycline induced an immediate pro-inflammatory expression profile that resolved after the recovery period. Long-term changes indicated an inhibition of proliferation by doxycycline and induction of beneficial immune and metabolic pathways by metronidazole. Persistent alterations in microRNA and mRNA expression profiles after the recovery period indicate that all three medications may induce long-term epigenetic modifications in both T-cell subsets. Yet, our data do not support the induction of a long-term pro-inflammatory phenotype in murine Tregs and naive T-cells.

Altmetrics

Downloads

8 downloads since deposited on 13 Jan 2017
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:17 November 2016
Deposited On:13 Jan 2017 15:24
Last Modified:06 Aug 2017 12:06
Publisher:Nature Publishing Group
ISSN:2045-2322
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep37082
PubMed ID:27853192

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations