Header

UZH-Logo

Maintenance Infos

Spatio-temporal dynamics of soil CH4 uptake after application of N fertilizer with and without the nitrification inhibitor 3,4- dimethylpyrazole phosphate (DMPP)


Rime, Thomas; Niklaus, Pascal A (2017). Spatio-temporal dynamics of soil CH4 uptake after application of N fertilizer with and without the nitrification inhibitor 3,4- dimethylpyrazole phosphate (DMPP). Soil Biology and Biochemistry, 104:218-225.

Abstract

Soil ecosystems actively regulate climate by controlling methane and nitrous oxide fluxes into the atmosphere. Soils have been, however, drastically altered by agricultural practices, such as nitrogen amendment which increases nitrous oxide emission while it reduces methane uptakes in well-aerated soils by affecting methane-oxidizing bacteria. New nitrification inhibitors, such as 3,4-dimethylpyrazole phosphate (DMPP), are often applied in combination with nitrogen-based fertilizer to increase plant productivity by increasing available ammonium and inhibiting denitrification processes reducing in turn nitrous oxide emissions. However, the increase in ammonium due to nitrification inhibition might also affect methane oxidizing bacteria. We therefore investigated the effects of nitrogen-based fertilizer and DMPP on methane and nitrous oxide fluxes in an extensively managed grassland. We also determined the spatial distribution of active methane oxidizing bacteria by radiolabeling. Short-term reduction in methane uptake and methanotrophic activity occurred after application of 600 kg N ha−1 while DMPP did not alter methane uptake but reduced nitrous oxide emission. The combination of both radio-labeling and field measurement revealed that methane uptake collapsed in the field when methanotrophic activity was inhibited not only in the surface but also in deeper soil. Finally, both methane uptake and methanotrophic activity recovered with time.

Abstract

Soil ecosystems actively regulate climate by controlling methane and nitrous oxide fluxes into the atmosphere. Soils have been, however, drastically altered by agricultural practices, such as nitrogen amendment which increases nitrous oxide emission while it reduces methane uptakes in well-aerated soils by affecting methane-oxidizing bacteria. New nitrification inhibitors, such as 3,4-dimethylpyrazole phosphate (DMPP), are often applied in combination with nitrogen-based fertilizer to increase plant productivity by increasing available ammonium and inhibiting denitrification processes reducing in turn nitrous oxide emissions. However, the increase in ammonium due to nitrification inhibition might also affect methane oxidizing bacteria. We therefore investigated the effects of nitrogen-based fertilizer and DMPP on methane and nitrous oxide fluxes in an extensively managed grassland. We also determined the spatial distribution of active methane oxidizing bacteria by radiolabeling. Short-term reduction in methane uptake and methanotrophic activity occurred after application of 600 kg N ha−1 while DMPP did not alter methane uptake but reduced nitrous oxide emission. The combination of both radio-labeling and field measurement revealed that methane uptake collapsed in the field when methanotrophic activity was inhibited not only in the surface but also in deeper soil. Finally, both methane uptake and methanotrophic activity recovered with time.

Statistics

Citations

Altmetrics

Downloads

0 downloads since deposited on 16 Jan 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:January 2017
Deposited On:16 Jan 2017 13:18
Last Modified:17 Jan 2017 08:45
Publisher:Elsevier
ISSN:0038-0717
Publisher DOI:https://doi.org/10.1016/j.soilbio.2016.11.001

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only until January 2019
Size: 3MB
View at publisher
Embargo till: 2019-01
Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations