Header

UZH-Logo

Maintenance Infos

Trait–demography relationships underlying small mammal population fluctuations


van Benthem, Koen J; Froy, Hannah; Coulson, Tim; Getz, Lowell L; Oli, Madan K; Ozgul, Arpat (2017). Trait–demography relationships underlying small mammal population fluctuations. Journal of Animal Ecology, 86(2):348-358.

Abstract

1.Large-scale fluctuations in abundance are a common feature of small mammal populations and have been the subject of extensive research. These demographic fluctuations are often associated with concurrent changes in the average body mass of individuals, sometimes referred to as the “Chitty effect”. Despite the long-standing recognition of this phenomenon, an empirical investigation of the underlying coupled dynamics of body mass and population growth has been lacking.
2.Using long-term life-history data combined with a trait-based demographic approach, we examined the relationship between body mass and demography in a small mammal population that exhibits non-cyclic, large-scale fluctuations in abundance. We used data from the male segment of a 25-year study of the monogamous prairie vole, Microtus ochrogaster, in Illinois, USA. Specifically, we investigated how trait–demography relationships and trait distributions changed between different phases of population fluctuations, and the consequences of these changes for both trait and population dynamics.
3.We observed phase-specific changes in male adult body mass distribution in this population of prairie voles. Our analyses revealed that these changes were driven by variation in ontogenetic growth, rather than selection acting on the trait. The resulting changes in body mass influenced most life-history processes, and these effects varied among phases of population fluctuation. However, these changes did not propagate to affect the population growth rate due to the small effect of body mass on vital rates, compared to the overall differences in vital rates between phases. The increase phase of the fluctuations was initiated by enhanced survival, particularly of juveniles, and fecundity whereas the decline phase was driven by an overall reduction in fecundity, survival and maturation rates.
4.Our study provides empirical support, as well as a potential mechanism, underlying the observed trait changes accompanying population fluctuations. Body size dynamics and population fluctuations resulted from different life-history processes. Therefore, we conclude that body size dynamics in our population do not drive the observed population dynamics. This more in-depth understanding of different components of small mammal population fluctuations will help us to better identify the mechanistic drivers of this interesting phenomenon.

Abstract

1.Large-scale fluctuations in abundance are a common feature of small mammal populations and have been the subject of extensive research. These demographic fluctuations are often associated with concurrent changes in the average body mass of individuals, sometimes referred to as the “Chitty effect”. Despite the long-standing recognition of this phenomenon, an empirical investigation of the underlying coupled dynamics of body mass and population growth has been lacking.
2.Using long-term life-history data combined with a trait-based demographic approach, we examined the relationship between body mass and demography in a small mammal population that exhibits non-cyclic, large-scale fluctuations in abundance. We used data from the male segment of a 25-year study of the monogamous prairie vole, Microtus ochrogaster, in Illinois, USA. Specifically, we investigated how trait–demography relationships and trait distributions changed between different phases of population fluctuations, and the consequences of these changes for both trait and population dynamics.
3.We observed phase-specific changes in male adult body mass distribution in this population of prairie voles. Our analyses revealed that these changes were driven by variation in ontogenetic growth, rather than selection acting on the trait. The resulting changes in body mass influenced most life-history processes, and these effects varied among phases of population fluctuation. However, these changes did not propagate to affect the population growth rate due to the small effect of body mass on vital rates, compared to the overall differences in vital rates between phases. The increase phase of the fluctuations was initiated by enhanced survival, particularly of juveniles, and fecundity whereas the decline phase was driven by an overall reduction in fecundity, survival and maturation rates.
4.Our study provides empirical support, as well as a potential mechanism, underlying the observed trait changes accompanying population fluctuations. Body size dynamics and population fluctuations resulted from different life-history processes. Therefore, we conclude that body size dynamics in our population do not drive the observed population dynamics. This more in-depth understanding of different components of small mammal population fluctuations will help us to better identify the mechanistic drivers of this interesting phenomenon.

Statistics

Altmetrics

Downloads

2 downloads since deposited on 23 Jan 2017
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2017
Deposited On:23 Jan 2017 15:09
Last Modified:08 Dec 2017 22:31
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0021-8790
Funders:Swiss National Science Foundation, European Research Council, University of Illinois School of Life Sciences and Graduate College Research Board
Publisher DOI:https://doi.org/10.1111/1365-2656.12627
PubMed ID:28000289

Download

Content: Accepted Version
Filetype: PDF - Registered users only until 22 December 2017
Size: 990kB
View at publisher
Embargo till: 2017-12-22