Header

UZH-Logo

Maintenance Infos

Patterns or mechanisms? Bergmann’s and Rapoport’s rule in moths along an elevational gradient


Beck, Jan; Liedtke, H C; Widler, S; Altermatt, Florian; Hagmann, R; Loader, S P; Lang, S; Fiedler, K (2016). Patterns or mechanisms? Bergmann’s and Rapoport’s rule in moths along an elevational gradient. Community Ecology, 17(2):137-148.

Abstract

Bergmann’s rule predicts increasing body sizes at higher elevations. The elevational Rapoport’s rule predicts an increase of elevational range size with higher elevations. Both rules have often been related to effects of temperature. Larger bodies allow more efficient heat preservation at lower temperature, explaining Bergmann’s rule. Higher temperature variability may select for adaptations that allow increased range sizes, explaining Rapoport’s rule. The generality of both rules has been challenged and evidence towards explanatory mechanisms has been equivocal. We investigated temperature and its variability as explanations for Bergmann’s and Rapoport’s rule in moths along an elevation gradient in Switzerland. In particular, we tested for relationships between elevation, temperature and body size across almost 300 species of Macrolepidoptera along a gradient from 600 to 2400 m a.s.l. The gradient was resampled throughout the vegetation season, which allowed assessing temperature effects independently from elevation. We controlled analyses for covariate traits of moths and their phylogeny. We found a positive relationship between body size and elevation, but no link with temperature. Furthermore, there was no positive link between average elevation and elevational range, but there was between temperature variability and elevational range. We conclude that mechanisms other than temperature can lead to increasing body sizes with elevation (supporting Bergmann’s pattern, but not the mechanism). Contrary to that, data support the mechanism for Rapoport’s rule: high temperature variability is associated with large ranges. However, because temperature variability is not necessarily increasing with elevation, it may not always lead to the geographic pattern predicted.

Abstract

Bergmann’s rule predicts increasing body sizes at higher elevations. The elevational Rapoport’s rule predicts an increase of elevational range size with higher elevations. Both rules have often been related to effects of temperature. Larger bodies allow more efficient heat preservation at lower temperature, explaining Bergmann’s rule. Higher temperature variability may select for adaptations that allow increased range sizes, explaining Rapoport’s rule. The generality of both rules has been challenged and evidence towards explanatory mechanisms has been equivocal. We investigated temperature and its variability as explanations for Bergmann’s and Rapoport’s rule in moths along an elevation gradient in Switzerland. In particular, we tested for relationships between elevation, temperature and body size across almost 300 species of Macrolepidoptera along a gradient from 600 to 2400 m a.s.l. The gradient was resampled throughout the vegetation season, which allowed assessing temperature effects independently from elevation. We controlled analyses for covariate traits of moths and their phylogeny. We found a positive relationship between body size and elevation, but no link with temperature. Furthermore, there was no positive link between average elevation and elevational range, but there was between temperature variability and elevational range. We conclude that mechanisms other than temperature can lead to increasing body sizes with elevation (supporting Bergmann’s pattern, but not the mechanism). Contrary to that, data support the mechanism for Rapoport’s rule: high temperature variability is associated with large ranges. However, because temperature variability is not necessarily increasing with elevation, it may not always lead to the geographic pattern predicted.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 23 Jan 2017
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Altitude, Body size, Elevation, Macrolepidoptera, Range size, Temperature variability
Language:English
Date:9 November 2016
Deposited On:23 Jan 2017 15:19
Last Modified:23 Jan 2017 15:19
Publisher:Akadémiai Kiadó
ISSN:1585-8553
Publisher DOI:https://doi.org/10.1556/168.2016.17.2.2

Download

Preview Icon on Download
Content: Draft Version
Filetype: PDF - Registered users only
Size: 798kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations