Header

UZH-Logo

Maintenance Infos

Enhanced plasticity of mature granule cells reduces survival of newborn neurons in the adult mouse hippocampus


Kleine Borgmann, Felix; Gräff, Johannes; Mansuy, Isabelle; Toni, Nicolas; Jessberger, Sebastian (2016). Enhanced plasticity of mature granule cells reduces survival of newborn neurons in the adult mouse hippocampus. Matters Select:online.

Abstract

Dentate granule cells are born throughout life in the mammalian hippocampus. The integration of newborn neurons into the dentate circuit is activity-dependent and structural data characterizing synapse formation suggested that the survival of adult-born granule cells is regulated by competition for synaptic partners. Here we tested this hypothesis by using a mouse model with genetically enhanced plasticity of mature granule cells through temporally controlled expression of a nuclear inhibitor of protein phosphatase 1 (NIPP1*). Using thymidine analogues and retrovirus-mediated cell labeling, we show that synaptic integration and subsequent survival of newborn neurons is decreased in NIPP1*- expressing mice, suggesting that newborn neurons compete with pre-existing granule cells for stable integration. The data presented here provides experimental evidence for a long-standing hypothesis and suggest cellular competition as a key mechanism regulating the integration and survival of newborn granule cells in the adult mammalian hippocampus.

Abstract

Dentate granule cells are born throughout life in the mammalian hippocampus. The integration of newborn neurons into the dentate circuit is activity-dependent and structural data characterizing synapse formation suggested that the survival of adult-born granule cells is regulated by competition for synaptic partners. Here we tested this hypothesis by using a mouse model with genetically enhanced plasticity of mature granule cells through temporally controlled expression of a nuclear inhibitor of protein phosphatase 1 (NIPP1*). Using thymidine analogues and retrovirus-mediated cell labeling, we show that synaptic integration and subsequent survival of newborn neurons is decreased in NIPP1*- expressing mice, suggesting that newborn neurons compete with pre-existing granule cells for stable integration. The data presented here provides experimental evidence for a long-standing hypothesis and suggest cellular competition as a key mechanism regulating the integration and survival of newborn granule cells in the adult mammalian hippocampus.

Statistics

Altmetrics

Downloads

6 downloads since deposited on 25 Jan 2017
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2016
Deposited On:25 Jan 2017 11:27
Last Modified:21 Mar 2017 12:41
Publisher:ScienceMatters AG
ISSN:2297-9239
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.19185/matters.201610000014

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 6MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations