Header

UZH-Logo

Maintenance Infos

Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments


Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias (2016). Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments. Hydrology and Earth System Sciences, 20(9):3895-3905.

Abstract

In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.

Abstract

In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
6 citations in Scopus®
6 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 25 Jan 2017
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2016
Deposited On:25 Jan 2017 09:38
Last Modified:27 Apr 2018 04:00
Publisher:Copernicus Publications
ISSN:1027-5606
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/hess-20-3895-2016

Download

Download PDF  'Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)