Header

UZH-Logo

Maintenance Infos

Impairment of CCR6+ and CXCR3+ th cell migration in HIV-1 infection is rescued by modulating actin polymerization


Cecchinato, Valentina; Bernasconi, Enos; Speck, Roberto F; Proietti, Michele; Sauermann, Ulrike; D'Agostino, Gianluca; Danelon, Gabriela; Rezzonico Jost, Tanja; Grassi, Fabio; Raeli, Lorenzo; Schöni-Affolter, Franziska; Stahl-Hennig, Christiane; Uguccioni, Mariagrazia; Swiss HIV Cohort Study (2017). Impairment of CCR6+ and CXCR3+ th cell migration in HIV-1 infection is rescued by modulating actin polymerization. Journal of Immunology, 198(1):184-195.

Abstract

CD4(+) T cell repopulation of the gut is rarely achieved in HIV-1-infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6(+) and CXCR3(+) Th cells accumulate in the blood of aviremic HIV-1-infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities.

Abstract

CD4(+) T cell repopulation of the gut is rarely achieved in HIV-1-infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6(+) and CXCR3(+) Th cells accumulate in the blood of aviremic HIV-1-infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities.

Statistics

Altmetrics

Downloads

1 download since deposited on 26 Jan 2017
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 January 2017
Deposited On:26 Jan 2017 10:21
Last Modified:28 Aug 2017 19:36
Publisher:American Association of Immunologists
ISSN:0022-1767
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.4049/jimmunol.1600568
PubMed ID:27895171

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher