Header

UZH-Logo

Maintenance Infos

Prevalence of complications in intraoperative magnetic resonance imaging combined with neurophysiologic monitoring


Sarnthein, Johannes; Lüchinger, Roger; Piccirelli, Marco; Regli, Luca; Bozinov, Oliver (2016). Prevalence of complications in intraoperative magnetic resonance imaging combined with neurophysiologic monitoring. World Neurosurgery, 93:168-174.

Abstract

BACKGROUND AND OBJECTIVE High-field intraoperative magnetic resonance imaging (ioMRI) is becoming increasingly available in neurosurgery centers, where it has to be combined with intraoperative neurophysiologic monitoring (IONM). IONM needle electrodes remain on the patient during ioMRI and may cause image distortions and burns. We tested magnetic resonance (MR) -heating experimentally and investigated the prevalence of complications.
METHODS We studied electrodes that are certified for IONM, but not "MR conditional." They consist of copper cables (length, 1.5 m) and needles made of either stainless steel (ferromagnetic) or paramagnetic platinum/iridium alloy. We simulated an ioMRI session with gel and measured the temperature increase with optical fibers. We measured the force that an electrode experiences in the magnetic field. Between 2013 and 2016, we prospectively documented subcutaneous needle electrodes that remained in the patient during intraoperative 3 Tesla ioMRI scans.
RESULTS The in vitro testing of the electrodes produced a maximum heating (ΔT = 3.9°C) and force of 0.026 N. We placed 1237 subcutaneous needles in 57 surgical procedures with combined IONM and ioMRI, where needles remained in place during ioMRI. One patient suffered a skin burn on the shoulder. All other electrodes had no side effects.
CONCLUSIONS We have corroborated the history of safe use for electrodes with 1.5 m cable in a 3T MRI scanner and demonstrated their use. Nevertheless, heating cannot be excluded, as it depends on location and cable placement. When leaving electrodes in place during ioMRI, risks and benefits have to be carefully evaluated for each patient.

Abstract

BACKGROUND AND OBJECTIVE High-field intraoperative magnetic resonance imaging (ioMRI) is becoming increasingly available in neurosurgery centers, where it has to be combined with intraoperative neurophysiologic monitoring (IONM). IONM needle electrodes remain on the patient during ioMRI and may cause image distortions and burns. We tested magnetic resonance (MR) -heating experimentally and investigated the prevalence of complications.
METHODS We studied electrodes that are certified for IONM, but not "MR conditional." They consist of copper cables (length, 1.5 m) and needles made of either stainless steel (ferromagnetic) or paramagnetic platinum/iridium alloy. We simulated an ioMRI session with gel and measured the temperature increase with optical fibers. We measured the force that an electrode experiences in the magnetic field. Between 2013 and 2016, we prospectively documented subcutaneous needle electrodes that remained in the patient during intraoperative 3 Tesla ioMRI scans.
RESULTS The in vitro testing of the electrodes produced a maximum heating (ΔT = 3.9°C) and force of 0.026 N. We placed 1237 subcutaneous needles in 57 surgical procedures with combined IONM and ioMRI, where needles remained in place during ioMRI. One patient suffered a skin burn on the shoulder. All other electrodes had no side effects.
CONCLUSIONS We have corroborated the history of safe use for electrodes with 1.5 m cable in a 3T MRI scanner and demonstrated their use. Nevertheless, heating cannot be excluded, as it depends on location and cable placement. When leaving electrodes in place during ioMRI, risks and benefits have to be carefully evaluated for each patient.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 26 Jan 2017
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:September 2016
Deposited On:26 Jan 2017 14:40
Last Modified:08 Dec 2017 22:41
Publisher:Elsevier
ISSN:1878-8750
Publisher DOI:https://doi.org/10.1016/j.wneu.2016.05.097
PubMed ID:27288580

Download