Header

UZH-Logo

Maintenance Infos

DVS benchmark datasets for object tracking, action recognition and object recognition


Hu, Yuhuang; Liu, Hongjie; Pfeiffer, Michael; Delbruck, Tobi (2016). DVS benchmark datasets for object tracking, action recognition and object recognition. Frontiers in Neuroscience:10:405.

Abstract

Benchmarks have played a vital role in the advancement of visual object recognition and other fields of computer vision (LeCun et al., 1998; Deng et al., 2009;). The challenges posed by these standard datasets have helped identify and overcome the shortcomings of existing approaches, and have led to great advances of the state of the art. Even the recent massive increase of interest in deep learning methods can be attributed to their success in difficult benchmarks such as ImageNet (Krizhevsky et al., 2012; LeCun et al., 2015). Neuromorphic vision uses silicon retina sensors such as the dynamic vision sensor (DVS; Lichtsteiner et al., 2008). These sensors and their DAVIS (Dynamic and Active-pixel Vision Sensor) and ATIS (Asynchronous Time-based Image Sensor) derivatives (Brandli et al., 2014; Posch et al., 2014) are inspired by biological vision by generating streams of asynchronous events indicating local log-intensity brightness changes. They thereby greatly reduce the amount of data to be processed, and their dynamic nature makes them a good fit for domains such as optical flow, object tracking, action recognition, or dynamic scene understanding. Compared to classical computer vision, neuromorphic vision is a younger and much smaller field of research, and lacks benchmarks, which impedes the progress of the field. To address this we introduce the largest event-based vision benchmark dataset published to date, hoping to satisfy a growing demand and stimulate challenges for the community. In particular, the availability of such benchmarks should help the development of algorithms processing event-based vision input, allowing a direct fair comparison of different approaches. We have explicitly chosen mostly dynamic vision tasks such as action recognition or tracking, which could benefit from the strengths of neuromorphic vision sensors, although algorithms that exploit these features are largely missing.

Abstract

Benchmarks have played a vital role in the advancement of visual object recognition and other fields of computer vision (LeCun et al., 1998; Deng et al., 2009;). The challenges posed by these standard datasets have helped identify and overcome the shortcomings of existing approaches, and have led to great advances of the state of the art. Even the recent massive increase of interest in deep learning methods can be attributed to their success in difficult benchmarks such as ImageNet (Krizhevsky et al., 2012; LeCun et al., 2015). Neuromorphic vision uses silicon retina sensors such as the dynamic vision sensor (DVS; Lichtsteiner et al., 2008). These sensors and their DAVIS (Dynamic and Active-pixel Vision Sensor) and ATIS (Asynchronous Time-based Image Sensor) derivatives (Brandli et al., 2014; Posch et al., 2014) are inspired by biological vision by generating streams of asynchronous events indicating local log-intensity brightness changes. They thereby greatly reduce the amount of data to be processed, and their dynamic nature makes them a good fit for domains such as optical flow, object tracking, action recognition, or dynamic scene understanding. Compared to classical computer vision, neuromorphic vision is a younger and much smaller field of research, and lacks benchmarks, which impedes the progress of the field. To address this we introduce the largest event-based vision benchmark dataset published to date, hoping to satisfy a growing demand and stimulate challenges for the community. In particular, the availability of such benchmarks should help the development of algorithms processing event-based vision input, allowing a direct fair comparison of different approaches. We have explicitly chosen mostly dynamic vision tasks such as action recognition or tracking, which could benefit from the strengths of neuromorphic vision sensors, although algorithms that exploit these features are largely missing.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 26 Jan 2017
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2016
Deposited On:26 Jan 2017 12:46
Last Modified:05 Aug 2017 11:54
Publisher:Frontiers Research Foundation
ISSN:1662-453X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnins.2016.00405
PubMed ID:27630540

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)