Header

UZH-Logo

Maintenance Infos

Neural sampling by irregular gating inhibition of spiking neurons and attractor networks - Zurich Open Repository and Archive


Muller, Lorenz K.; Indiveri, Giacomo (2016). Neural sampling by irregular gating inhibition of spiking neurons and attractor networks. arXiv: Quantitative Biology/Neurons and Cognition 1605.06925, Institute of Neuroinformatics.

Abstract

A long tradition in theoretical neuroscience casts sensory processing in the brain as the process of inferring the maximally consistent interpretations of imperfect sensory input. Recently it has been shown that Gamma-band inhibition can enable neural attractor networks to approximately carry out such a sampling mechanism. In this paper we propose a novel neural network model based on irregular gating inhibition, show analytically how it implements a Monte-Carlo Markov Chain (MCMC) sampler, and describe how it can be used to model networks of both neural attractors as well as of single spiking neurons. Finally we show how this model applied to spiking neurons gives rise to a new putative mechanism that could be used to implement stochastic synaptic weights in biological neural networks and in neuromorphic hardware.

Abstract

A long tradition in theoretical neuroscience casts sensory processing in the brain as the process of inferring the maximally consistent interpretations of imperfect sensory input. Recently it has been shown that Gamma-band inhibition can enable neural attractor networks to approximately carry out such a sampling mechanism. In this paper we propose a novel neural network model based on irregular gating inhibition, show analytically how it implements a Monte-Carlo Markov Chain (MCMC) sampler, and describe how it can be used to model networks of both neural attractors as well as of single spiking neurons. Finally we show how this model applied to spiking neurons gives rise to a new putative mechanism that could be used to implement stochastic synaptic weights in biological neural networks and in neuromorphic hardware.

Statistics

Downloads

1 download since deposited on 26 Jan 2017
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2016
Deposited On:26 Jan 2017 11:48
Last Modified:03 Jun 2017 11:17
Series Name:arXiv: Quantitative Biology/Neurons and Cognition
Free access at:Official URL. An embargo period may apply.
Official URL:http://arxiv.org/abs/1605.06925

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 366kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations