Header

UZH-Logo

Maintenance Infos

Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC


Bassila, Christine; Ghemrawi, Rose; Flayac, Justine; Froese, D Sean; Baumgartner, Matthias R; Guéant, Jean-Louis; Coelho, David (2017). Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. BBA - Biochimica et Biophysica Acta, 1863(1):103-112.

Abstract

An increasing number of studies indicate that each step of the intracellular processing of vitamin B12 or cobalamin (Cbl) involves protein-protein interactions. We have previously described a novel interaction between methionine synthase (MS) and MMACHC and its effect on the regulation of MMACHC activity. Our goal is to further characterize the interactions of MS with other potential partners in a so-called MS interactome. We dissected the interactions and their alterations by co-immunoprecipitation and DuoLink proximity ligation assays in fibroblasts with cblG, cblE, and cblC genetic defects affecting respectively the expression of MS, methionine synthase reductase (MSR) and MMACHC and in HepG2 cells transfected with corresponding siRNAs. We observed the known interactions of MS with MSR and with MMACHC as well as MMADHC with MMACHC, but we also observed novel interactions for MSR with MMACHC and with MMADHC and MS with MMADHC. Furthermore, we show that the absence of MS or MMACHC expression disrupts the interactions between the other interactome members, in cblC and cblG fibroblasts and in HepG2 cells transfected with siRNAs. Our data show that the processing of Cbl in cytoplasm occurs in a multiprotein complex composed of at least MS, MSR, MMACHC and MMADHC, which could contribute to shuttle safely and efficiently Cbl towards MS. Our data suggest that defective protein-protein interactions among key players of this pathway could contribute to the molecular mechanisms of the cblC, cblG and cblE genetic defects and provide novel insights into our understanding of the pathophysiology of inherited disorders of Cbl metabolism.

Abstract

An increasing number of studies indicate that each step of the intracellular processing of vitamin B12 or cobalamin (Cbl) involves protein-protein interactions. We have previously described a novel interaction between methionine synthase (MS) and MMACHC and its effect on the regulation of MMACHC activity. Our goal is to further characterize the interactions of MS with other potential partners in a so-called MS interactome. We dissected the interactions and their alterations by co-immunoprecipitation and DuoLink proximity ligation assays in fibroblasts with cblG, cblE, and cblC genetic defects affecting respectively the expression of MS, methionine synthase reductase (MSR) and MMACHC and in HepG2 cells transfected with corresponding siRNAs. We observed the known interactions of MS with MSR and with MMACHC as well as MMADHC with MMACHC, but we also observed novel interactions for MSR with MMACHC and with MMADHC and MS with MMADHC. Furthermore, we show that the absence of MS or MMACHC expression disrupts the interactions between the other interactome members, in cblC and cblG fibroblasts and in HepG2 cells transfected with siRNAs. Our data show that the processing of Cbl in cytoplasm occurs in a multiprotein complex composed of at least MS, MSR, MMACHC and MMADHC, which could contribute to shuttle safely and efficiently Cbl towards MS. Our data suggest that defective protein-protein interactions among key players of this pathway could contribute to the molecular mechanisms of the cblC, cblG and cblE genetic defects and provide novel insights into our understanding of the pathophysiology of inherited disorders of Cbl metabolism.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2017
Deposited On:30 Jan 2017 15:58
Last Modified:08 Dec 2017 22:43
Publisher:Elsevier
ISSN:0006-3002
Publisher DOI:https://doi.org/10.1016/j.bbadis.2016.10.016
PubMed ID:27771510

Download

Full text not available from this repository.
View at publisher