Header

UZH-Logo

Maintenance Infos

Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis


Papageorgiou, Spyridon N; Keilig, Ludger; Hasan, Istabrak; Jäger, Andreas; Bourauel, Christoph (2016). Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis. European Journal of Orthodontics, 38(3):300-307.

Abstract

INTRODUCTION Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. METHODS A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. RESULTS The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). LIMITATIONS The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. CONCLUSION According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement.

Abstract

INTRODUCTION Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. METHODS A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. RESULTS The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). LIMITATIONS The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. CONCLUSION According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

28 downloads since deposited on 01 Feb 2017
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Orthodontics and Pediatric Dentistry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:June 2016
Deposited On:01 Feb 2017 15:24
Last Modified:02 Oct 2017 11:16
Publisher:Oxford University Press
ISSN:0141-5387
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/ejo/cjv050
PubMed ID:26174769

Download

Download PDF  'Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher