Header

UZH-Logo

Maintenance Infos

Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation


Shen, Nan; Heintz, Caroline; Thiel, Christian; Okun, Jürgen G; Hoffmann, Georg F; Blau, Nenad (2016). Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Molecular Genetics and Metabolism, 117(3):328-335.

Abstract

BACKGROUND: In phenylketonuria (PKU) patients, the combination of two phenylalanine hydroxylase (PAH) alleles is the main determinant of residual enzyme activity in vivo and in vitro. Inconsistencies in genotype-phenotype correlations have been observed in compound heterozygous patients and a particular combination of two PAH alleles may produce a phenotype that is different from the expected one, possibly due to interallelic complementation.
METHODS: A dual eukaryotic vector system with two distinct PAH proteins N-terminally fused to different epitope tags was used to investigate the co-expression of PAH alleles reported in patients with inconsistent phenotypes. PAH variant proteins were transiently co-transfected in COS-7 cells. PAH activity was measured by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS), and protein expression was measured by Western blot. Genotypes were compared with predicted PAH activity from the PAH locus-specific database (PAHvdb) and with phenotypes and tetrahydrobiopterin (BH4) responsiveness from more than 10,000 PKU patients (BIOPKU database).
RESULTS: Through the expression and co-expression of 17 variant alleles we demonstrated that interallelic interaction could be both positive and negative. The co-expressions of p.[I65T];[R261Q] (19.5% activity; predicted 43.5%) and p.[I65T];[R408W] (15.0% vs. 26.8% activity) are examples of genotypes with negative interallelic interaction. The co-expressions of p.[E178G];[Q232E] (55.0% vs.36.4%) and p.[P384S];[R408W] (56.1% vs. 40.8%) are examples of positive subunit interactions. Inconsistencies of PAH residual enzyme activity in vitro and of PKU patients' phenotypes were observed as well. The PAH activity of p.[R408W];[A300S] is 18.0% of the wild-type activity; however, 88% of patients with this genotype exhibit mild hyperphenylalaninemias (MHPs).
CONCLUSION: The co-expression of two distinct PAH variants revealed possible dominance effects (positive or negative) by one of the variants on residual PAH activity as a result of interallelic complementation.

Abstract

BACKGROUND: In phenylketonuria (PKU) patients, the combination of two phenylalanine hydroxylase (PAH) alleles is the main determinant of residual enzyme activity in vivo and in vitro. Inconsistencies in genotype-phenotype correlations have been observed in compound heterozygous patients and a particular combination of two PAH alleles may produce a phenotype that is different from the expected one, possibly due to interallelic complementation.
METHODS: A dual eukaryotic vector system with two distinct PAH proteins N-terminally fused to different epitope tags was used to investigate the co-expression of PAH alleles reported in patients with inconsistent phenotypes. PAH variant proteins were transiently co-transfected in COS-7 cells. PAH activity was measured by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS), and protein expression was measured by Western blot. Genotypes were compared with predicted PAH activity from the PAH locus-specific database (PAHvdb) and with phenotypes and tetrahydrobiopterin (BH4) responsiveness from more than 10,000 PKU patients (BIOPKU database).
RESULTS: Through the expression and co-expression of 17 variant alleles we demonstrated that interallelic interaction could be both positive and negative. The co-expressions of p.[I65T];[R261Q] (19.5% activity; predicted 43.5%) and p.[I65T];[R408W] (15.0% vs. 26.8% activity) are examples of genotypes with negative interallelic interaction. The co-expressions of p.[E178G];[Q232E] (55.0% vs.36.4%) and p.[P384S];[R408W] (56.1% vs. 40.8%) are examples of positive subunit interactions. Inconsistencies of PAH residual enzyme activity in vitro and of PKU patients' phenotypes were observed as well. The PAH activity of p.[R408W];[A300S] is 18.0% of the wild-type activity; however, 88% of patients with this genotype exhibit mild hyperphenylalaninemias (MHPs).
CONCLUSION: The co-expression of two distinct PAH variants revealed possible dominance effects (positive or negative) by one of the variants on residual PAH activity as a result of interallelic complementation.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2016
Deposited On:03 Feb 2017 08:41
Last Modified:04 Feb 2017 08:47
Publisher:Elsevier
ISSN:1096-7192
Publisher DOI:https://doi.org/10.1016/j.ymgme.2016.01.004
PubMed ID:26803807

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations