Header

UZH-Logo

Maintenance Infos

Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment


Senteler, M; Weisse, B; Rothenfluh, D A; Farshad, M T; Snedeker, J G (2016). Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment. Journal of Orthopaedic Research, 35(1):131-139.

Abstract

This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society.

Abstract

This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 02 Feb 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:adjacent segment disease; fusion angle; lumbar fusion; musculoskeletal modeling; shear forces
Language:English
Date:22 July 2016
Deposited On:02 Feb 2017 10:24
Last Modified:03 Feb 2017 04:11
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0736-0266
Publisher DOI:https://doi.org/10.1002/jor.23357
PubMed ID:27364167

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations