Header

UZH-Logo

Maintenance Infos

Trait selection during food web assembly: the roles of interactions and temperature


Gounand, Isabelle; Kéfi, Sonia; Mouquet, Nicolas; Gravel, Dominique (2016). Trait selection during food web assembly: the roles of interactions and temperature. Theoretical Ecology, 9(4):417-429.

Abstract

Understanding the processes driving community assembly is a central theme in ecology, yet this topic is marginally studied in food webs. Bioenergetic models have been instrumental in the development of food web theory, using allometric relationships with body mass, temperature, and explicit energy flows. However, despite their popularity, little is known about the constraints they impose on assembly dynamics. In this study, we build on classical consumer–resource theory to analyze the implications of the assembly process on trait selection in food webs. Using bioenergetic models, we investigate the selective pressure on body mass and conversion efficiency and its dependence on trophic structure and temperature.We find that the selection exerted by exploitative competition is highly sensitive to how the energy fluxes are modeled. However, the addition of a trophic level consistently selects for smaller body masses of primary producers. An increase in temperature triggers important cascading changes in food webs via a reduction of producer biomass, which is detrimental to herbivore persistence. This affects the structure of trait distributions, which in turn strengthens the exploitative competition and the selective pressure on traits. Our results suggest that greater attention should be devoted to the effects of food web assembly on trait selection to understand the diversity and the functioning of real food webs, as well as their possible response to ongoing global changes.

Abstract

Understanding the processes driving community assembly is a central theme in ecology, yet this topic is marginally studied in food webs. Bioenergetic models have been instrumental in the development of food web theory, using allometric relationships with body mass, temperature, and explicit energy flows. However, despite their popularity, little is known about the constraints they impose on assembly dynamics. In this study, we build on classical consumer–resource theory to analyze the implications of the assembly process on trait selection in food webs. Using bioenergetic models, we investigate the selective pressure on body mass and conversion efficiency and its dependence on trophic structure and temperature.We find that the selection exerted by exploitative competition is highly sensitive to how the energy fluxes are modeled. However, the addition of a trophic level consistently selects for smaller body masses of primary producers. An increase in temperature triggers important cascading changes in food webs via a reduction of producer biomass, which is detrimental to herbivore persistence. This affects the structure of trait distributions, which in turn strengthens the exploitative competition and the selective pressure on traits. Our results suggest that greater attention should be devoted to the effects of food web assembly on trait selection to understand the diversity and the functioning of real food webs, as well as their possible response to ongoing global changes.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

1 download since deposited on 06 Feb 2017
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Community assembly . Consumer–resource interactions . Bioenergetic model . Temperature . Size spectrum . Body mass . Metabolic theory of ecology
Language:English
Date:December 2016
Deposited On:06 Feb 2017 15:16
Last Modified:02 Feb 2018 12:01
Publisher:Springer
ISSN:1874-1738
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s12080-016-0299-7

Download