Header

UZH-Logo

Maintenance Infos

Successful grafting of tissue-engineered fetal skin


Mazzone, L; Pratsinis, M; Pontiggia, L; Reichmann, E; Meuli, M (2016). Successful grafting of tissue-engineered fetal skin. Pediatric Surgery International, 32(12):1177-1182.

Abstract

PURPOSE: Fetal repair of spina bifida results in improved outcomes and has therefore become a standard clinical procedure in some highly specialized centers. However, optimization of the procedure technique and timing is needed. Both might be achieved by facilitating the procedure using laboratory-grown fetal skin substitutes. The aim of this study was therefore to test in vivo the suitability of such a fetal skin substitute for an in utero application.
METHODS: Collagen-based hydrogels containing fetal ovine fibroblasts were seeded with fetal ovine keratinocytes and transplanted on immuno-incompetent nu/nu rats. After 3 weeks, grafts were harvested and analyzed histologically and by immunohistochemistry.
RESULTS: Laboratory-grown fetal ovine dermo-epidermal skin substitutes showed successful engraftment at 3 weeks. Histologically, grafts revealed a neo-dermis populated by fibroblasts and with ingrowth of vessels, and an epidermis with an adult-like, mature appearance depicting clearly basal, spinous, granular, and a corneal layer. Immunostaining confirmed a physiologically organized epidermis.
CONCLUSION: Fetal dermo-epidermal skin substitutes of ovine origin can successfully be grafted in vivo. In a next step, we will have to test whether favorable results can also be obtained when grafts are used in utero. If so, then human fetal spina bifida repair using laboratory-grown autologous fetal skin for defect closure may be envisaged.

Abstract

PURPOSE: Fetal repair of spina bifida results in improved outcomes and has therefore become a standard clinical procedure in some highly specialized centers. However, optimization of the procedure technique and timing is needed. Both might be achieved by facilitating the procedure using laboratory-grown fetal skin substitutes. The aim of this study was therefore to test in vivo the suitability of such a fetal skin substitute for an in utero application.
METHODS: Collagen-based hydrogels containing fetal ovine fibroblasts were seeded with fetal ovine keratinocytes and transplanted on immuno-incompetent nu/nu rats. After 3 weeks, grafts were harvested and analyzed histologically and by immunohistochemistry.
RESULTS: Laboratory-grown fetal ovine dermo-epidermal skin substitutes showed successful engraftment at 3 weeks. Histologically, grafts revealed a neo-dermis populated by fibroblasts and with ingrowth of vessels, and an epidermis with an adult-like, mature appearance depicting clearly basal, spinous, granular, and a corneal layer. Immunostaining confirmed a physiologically organized epidermis.
CONCLUSION: Fetal dermo-epidermal skin substitutes of ovine origin can successfully be grafted in vivo. In a next step, we will have to test whether favorable results can also be obtained when grafts are used in utero. If so, then human fetal spina bifida repair using laboratory-grown autologous fetal skin for defect closure may be envisaged.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Clinic for Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:December 2016
Deposited On:10 Feb 2017 11:23
Last Modified:12 Feb 2017 06:01
Publisher:Springer
ISSN:0179-0358
Publisher DOI:https://doi.org/10.1007/s00383-016-3977-z
PubMed ID:27651371

Download

Full text not available from this repository.
View at publisher