Header

UZH-Logo

Maintenance Infos

Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions


Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel (2016). Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nature Nanotechnology, 11(2):170-176.

Abstract

Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

Abstract

Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

Statistics

Citations

23 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2016
Deposited On:09 Feb 2017 14:13
Last Modified:09 Feb 2017 14:14
Publisher:Nature Publishing Group
ISSN:1748-3387
Publisher DOI:https://doi.org/10.1038/nnano.2015.255

Download

Full text not available from this repository.
View at publisher