Header

UZH-Logo

Maintenance Infos

Inhibitor of apoptosis protein-1 regulates tumor necrosis factor-mediated destruction of intestinal epithelial cells


Grabinger, T; Bode, K J; Demgenski, J; Seitz, C; Delgado, M E; Kostadinova, F; Reinhold, C; Etemadi, N; Wilhelm, S; Schweinlin, M; Hänggi, Kay; Knop, J; Hauck, C; Walles, H; Silke, J; Wajant, H; Nachbur, U; Wong, W Wei-Lynn; Brunner, T (2017). Inhibitor of apoptosis protein-1 regulates tumor necrosis factor-mediated destruction of intestinal epithelial cells. Gastroenterology, 152(4):867-879.

Abstract

Background and aims: Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids.
Methods: RNA from cell lines and tissues and analyzed by quantitative PCR, protein levels were analyzed by immunoblot assays. BIRC2 (also called cIAP1) was expressed upon induction from lentiviral vectors in young adult mouse colon (YAMC) cells. YAMC cells, the mouse colon carcinoma cell line MC38, the mouse macrophage cell line RAW 264.7, or mouse and human organoids were incubated with Smac-mimetic compound LCL161 or recombinant TNF-like weak inducer of apoptosis (TNFSF12) along with TNF, and cell death was quantified. C57BL/6 mice with disruption of Xiap, Birc2 (encodes cIAP1), Birc3 (encodes cIAP2), Tnfrsf1a, or Tnfrsf1b (Tnfrsf1a and b encode TNF receptors) were injected with TNF or saline (control); liver and intestinal tissues were collected and analyzed for apoptosis induction by cleaved caspase 3 immunohistochemistry. We also measured levels of TNF and alanine aminotransferase in serum from mice.
Results: YAMC cells, and mouse and human intestinal organoids, died rapidly in response to TNF. YAMC and intestinal crypts expressed lower levels of XIAP, cIAP1, cIAP2, and cFLIP than liver tissue. Smac-mimetics reduced levels of cIAP1 and XIAP in MC38 and YAMC cells, and Smac-mimetics and TWEAK increased TNF-induced cell death in YAMC cells and organoids—most likely by sequestering and degrading cIAP1. Injection of TNF greatly increased levels of cell death in intestinal tissue of cIAP1-null mice, compared to wild- type C57BL/6 mice, cIAP2-null mice, or XIAP-null mice. Excessive TNF-induced cell death in the intestinal epithelium was mediated TNF receptor 1.
Conclusion: In a study of mouse and human cell lines, organoids, and tissues, we found cIAP1 to be required for regulation of TNF-induced intestinal epithelial cell death and survival. These findings have important implications for the pathogenesis of TNF-mediated enteropathies and chronic inflammatory diseases of the intestine.

Abstract

Background and aims: Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids.
Methods: RNA from cell lines and tissues and analyzed by quantitative PCR, protein levels were analyzed by immunoblot assays. BIRC2 (also called cIAP1) was expressed upon induction from lentiviral vectors in young adult mouse colon (YAMC) cells. YAMC cells, the mouse colon carcinoma cell line MC38, the mouse macrophage cell line RAW 264.7, or mouse and human organoids were incubated with Smac-mimetic compound LCL161 or recombinant TNF-like weak inducer of apoptosis (TNFSF12) along with TNF, and cell death was quantified. C57BL/6 mice with disruption of Xiap, Birc2 (encodes cIAP1), Birc3 (encodes cIAP2), Tnfrsf1a, or Tnfrsf1b (Tnfrsf1a and b encode TNF receptors) were injected with TNF or saline (control); liver and intestinal tissues were collected and analyzed for apoptosis induction by cleaved caspase 3 immunohistochemistry. We also measured levels of TNF and alanine aminotransferase in serum from mice.
Results: YAMC cells, and mouse and human intestinal organoids, died rapidly in response to TNF. YAMC and intestinal crypts expressed lower levels of XIAP, cIAP1, cIAP2, and cFLIP than liver tissue. Smac-mimetics reduced levels of cIAP1 and XIAP in MC38 and YAMC cells, and Smac-mimetics and TWEAK increased TNF-induced cell death in YAMC cells and organoids—most likely by sequestering and degrading cIAP1. Injection of TNF greatly increased levels of cell death in intestinal tissue of cIAP1-null mice, compared to wild- type C57BL/6 mice, cIAP2-null mice, or XIAP-null mice. Excessive TNF-induced cell death in the intestinal epithelium was mediated TNF receptor 1.
Conclusion: In a study of mouse and human cell lines, organoids, and tissues, we found cIAP1 to be required for regulation of TNF-induced intestinal epithelial cell death and survival. These findings have important implications for the pathogenesis of TNF-mediated enteropathies and chronic inflammatory diseases of the intestine.

Statistics

Citations

Altmetrics

Downloads

1 download since deposited on 14 Feb 2017
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2017
Deposited On:14 Feb 2017 08:41
Last Modified:21 Nov 2017 19:23
Publisher:Elsevier
ISSN:0016-5085
Funders:SNSF, DFG, NHMRC
Publisher DOI:https://doi.org/10.1053/j.gastro.2016.11.019
PubMed ID:27889570

Download

Download PDF  'Inhibitor of apoptosis protein-1 regulates tumor necrosis factor-mediated destruction of intestinal epithelial cells'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 5MB
View at publisher