Header

UZH-Logo

Maintenance Infos

Genetic specificity of a plant-insect food web: Implications for linking genetic variation to network complexity


Barbour, Matthew A; Fortuna, Miguel A; Bascompte, Jordi; Nicholson, Joshua R; Julkunen-Tiitto, Riitta; Jules, Erik S; Crutsinger, Gregory M (2016). Genetic specificity of a plant-insect food web: Implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences of the United States of America, 113(8):2128-2133.

Abstract

Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence.

Abstract

Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 13 Feb 2017
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:23 February 2016
Deposited On:13 Feb 2017 11:37
Last Modified:20 Feb 2017 14:55
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1513633113
PubMed ID:26858398

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 34MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations