Header

UZH-Logo

Maintenance Infos

MicroRNA gene expression signatures in long-surviving malignant pleural mesothelioma patients


Lin, Ruby C Y; Kirschner, Michaela B; Cheng, Yuen Yee; van Zandwijk, Nico; Reid, Glen (2016). MicroRNA gene expression signatures in long-surviving malignant pleural mesothelioma patients. Genomics Data, 9:44-49.

Abstract

Malignant pleural mesothelioma (MPM) is a tumor originating in the mesothelium, the membrane lining the thoracic cavities, and is induced by exposure to asbestos. Australia suffers one of the world's highest rates of MPM and the incidence is yet to peak. The prognosis for patients with MPM is poor and median survival following diagnosis is 4-18 months. Currently, no or few effective therapies exist for MPM. Trials of targeted agents such as antiangiogenic agents (VEGF, EGFR) or ribonuclease inhibitors (ranpirnase) largely failed to show efficacy in MPM Tsao et al. (2009) [1]. A recent study, however, showed that cisplatin/pemetrexed + bevacizumab (a recombinant humanized monoclonal antibody that inhibit VEGF) treatment has a survival benefit of 2.7 months Zalcman et al. (2016) [2]. It remains to be seen if this targeted therapy will be accepted as a new standard for MPM. Thus the unmet needs of MPM patients remain very pronounced and almost every patient will be confronted with drug resistance and recurrence of disease. We have identified unique gene signatures associated with prolonged survival in mesothelioma patients undergoing radical surgery (EPP, extrapleural pneumonectomy), as well as patients who underwent palliative surgery (pleurectomy/decortication). In addition to data published in Molecular Oncology, 2015;9:715-26 (GSE59180) Kirschner et al. (2015) , we describe here additional data using a system-based approach that support our previous observations. This data provides a resource to further explore microRNA dynamics in MPM.

Abstract

Malignant pleural mesothelioma (MPM) is a tumor originating in the mesothelium, the membrane lining the thoracic cavities, and is induced by exposure to asbestos. Australia suffers one of the world's highest rates of MPM and the incidence is yet to peak. The prognosis for patients with MPM is poor and median survival following diagnosis is 4-18 months. Currently, no or few effective therapies exist for MPM. Trials of targeted agents such as antiangiogenic agents (VEGF, EGFR) or ribonuclease inhibitors (ranpirnase) largely failed to show efficacy in MPM Tsao et al. (2009) [1]. A recent study, however, showed that cisplatin/pemetrexed + bevacizumab (a recombinant humanized monoclonal antibody that inhibit VEGF) treatment has a survival benefit of 2.7 months Zalcman et al. (2016) [2]. It remains to be seen if this targeted therapy will be accepted as a new standard for MPM. Thus the unmet needs of MPM patients remain very pronounced and almost every patient will be confronted with drug resistance and recurrence of disease. We have identified unique gene signatures associated with prolonged survival in mesothelioma patients undergoing radical surgery (EPP, extrapleural pneumonectomy), as well as patients who underwent palliative surgery (pleurectomy/decortication). In addition to data published in Molecular Oncology, 2015;9:715-26 (GSE59180) Kirschner et al. (2015) , we describe here additional data using a system-based approach that support our previous observations. This data provides a resource to further explore microRNA dynamics in MPM.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 14 Feb 2017
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:September 2016
Deposited On:14 Feb 2017 13:12
Last Modified:07 Aug 2017 03:42
Publisher:Elsevier
ISSN:2213-5960
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.gdata.2016.06.009
PubMed ID:27408810

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 750kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations