Header

UZH-Logo

Maintenance Infos

Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate


Haller, Stephanie; Pellegrini, Giovanni; Vermeulen, Christiaan; van der Meulen, Nicholas P; Köster, Ulli; Bernhardt, Peter; Schibli, Roger; Müller, Cristina (2016). Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate. EJNMMI Research, 6(1):online.

Abstract

BACKGROUND: The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process. (161)Tb has been shown to be more effective for tumor therapy than (177)Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of (161)Tb-folate and compare it to the renal effects caused by (177)Lu-folate.
METHODS: Renal side effects were investigated in nude mice after the application of different activities of (161)Tb-folate (10, 20, and 30 MBq per mouse) over a period of 8 months. Renal function was monitored by the determination of (99m)Tc-DMSA uptake in the kidneys and by measuring blood urea nitrogen and creatinine levels in the plasma. Histopathological analysis was performed by scoring of the tissue damage observed in HE-stained kidney sections from euthanized mice.
RESULTS: Due to the co-emitted Auger/conversion electrons, the mean absorbed renal dose of (161)Tb-folate (3.0 Gy/MBq) was about 24 % higher than that of (177)Lu-folate (2.3 Gy/MBq). After application of (161)Tb-folate, kidney function was reduced in a dose- and time-dependent manner, as indicated by the decreased renal uptake of (99m)Tc-DMSA and the increased levels of blood urea nitrogen and creatinine. Similar results were obtained when (177)Lu-folate was applied at the same activity. Histopathological investigations confirmed comparable renal cortical damage after application of the same activities of (161)Tb-folate and (177)Lu-folate. This was characterized by collapsed tubules and enlarged glomeruli with fibrin deposition in moderately injured kidneys and glomerulosclerosis in severely damaged kidneys.
CONCLUSIONS: Tb-folate induced dose-dependent radionephropathy over time, but did not result in more severe damage than (177)Lu-folate when applied at the same activity. These data are an indication that Auger/conversion electrons do not exacerbate overall renal damage after application with (161)Tb-folate as compared to (177)Lu-folate, even though they result in an increased dose deposition in the renal tissue. Global toxicity affecting other tissues than kidneys remains to be investigated after (161)Tb-based therapy, however.

Abstract

BACKGROUND: The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process. (161)Tb has been shown to be more effective for tumor therapy than (177)Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of (161)Tb-folate and compare it to the renal effects caused by (177)Lu-folate.
METHODS: Renal side effects were investigated in nude mice after the application of different activities of (161)Tb-folate (10, 20, and 30 MBq per mouse) over a period of 8 months. Renal function was monitored by the determination of (99m)Tc-DMSA uptake in the kidneys and by measuring blood urea nitrogen and creatinine levels in the plasma. Histopathological analysis was performed by scoring of the tissue damage observed in HE-stained kidney sections from euthanized mice.
RESULTS: Due to the co-emitted Auger/conversion electrons, the mean absorbed renal dose of (161)Tb-folate (3.0 Gy/MBq) was about 24 % higher than that of (177)Lu-folate (2.3 Gy/MBq). After application of (161)Tb-folate, kidney function was reduced in a dose- and time-dependent manner, as indicated by the decreased renal uptake of (99m)Tc-DMSA and the increased levels of blood urea nitrogen and creatinine. Similar results were obtained when (177)Lu-folate was applied at the same activity. Histopathological investigations confirmed comparable renal cortical damage after application of the same activities of (161)Tb-folate and (177)Lu-folate. This was characterized by collapsed tubules and enlarged glomeruli with fibrin deposition in moderately injured kidneys and glomerulosclerosis in severely damaged kidneys.
CONCLUSIONS: Tb-folate induced dose-dependent radionephropathy over time, but did not result in more severe damage than (177)Lu-folate when applied at the same activity. These data are an indication that Auger/conversion electrons do not exacerbate overall renal damage after application with (161)Tb-folate as compared to (177)Lu-folate, even though they result in an increased dose deposition in the renal tissue. Global toxicity affecting other tissues than kidneys remains to be investigated after (161)Tb-based therapy, however.

Statistics

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 15 Feb 2017
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pathology
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:Radionuclide therapy, 161Tb, 177Lu, Auger/conversion electrons, Radionephropathy, Kidney, Radiofolate
Language:English
Date:9 February 2016
Deposited On:15 Feb 2017 12:13
Last Modified:03 Aug 2017 17:47
Publisher:Springer
ISSN:2191-219X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s13550-016-0171-1
PubMed ID:26860295

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations