Abstract
One of the main objective of data fusion is the integration of several acquisition of the same physical object, in order to build a new consistent representation that embeds all the information from the different modalities. In this paper, we propose the use of optimal transport theory as a powerful mean of establishing correspondences between the modalities. After reviewing important properties and computational aspects, we showcase its application to three remote sensing fusion problems: domain adaptation, time series averaging and change detection in LIDAR data.