Header

UZH-Logo

Maintenance Infos

Neural correlates of fear of movement in patients with chronic low back pain vs. pain-free individuals


Meier, Michael L; Stämpfli, Philipp; Vrana, Andrea; Humphreys, Barry K; Seifritz, Erich; Hotz-Boendermaker, Sabina (2016). Neural correlates of fear of movement in patients with chronic low back pain vs. pain-free individuals. Frontiers in Human Neuroscience, 10:386.

Abstract

Fear of movement (FOM) can be acquired by a direct aversive experience such as pain or by social learning through observation and instruction. Excessive FOM results in heightened disability and is an obstacle for recovery from acute, subacute, and chronic low back pain (cLBP). FOM has further been identified as a significant explanatory factor in the Fear Avoidance (FA) model of cLBP that describes how individuals experiencing acute back pain may become trapped into a vicious circle of chronic disability and suffering. Despite a wealth of evidence emphasizing the importance of FOM in cLBP, to date, no related neural correlates in patients were found and this therefore has initiated a debate about the precise contribution of fear in the FA model. In the current fMRI study, we applied a novel approach encompassing: (1) video clips of potentially harmful activities for the back as FOM inducing stimuli; and (2) the assessment of FOM in both, cLBP patients (N = 20) and age- and gender-matched pain-free subjects (N = 20). Derived from the FA model, we hypothesized that FOM differentially affects brain regions involved in fear processing in patients with cLBP compared to pain-free individuals due to the recurrent pain and subsequent avoidance behavior. The results of the whole brain voxel-wise regression analysis revealed that: (1) FOM positively correlated with brain activity in fear-related brain regions such as the amygdala and the insula; and (2) differential effects of FOM between patients with cLBP and pain-free subjects were found in the extended amygdala and in its connectivity to the anterior insula. Current findings support the FOM component of the FA model in cLBP.

Abstract

Fear of movement (FOM) can be acquired by a direct aversive experience such as pain or by social learning through observation and instruction. Excessive FOM results in heightened disability and is an obstacle for recovery from acute, subacute, and chronic low back pain (cLBP). FOM has further been identified as a significant explanatory factor in the Fear Avoidance (FA) model of cLBP that describes how individuals experiencing acute back pain may become trapped into a vicious circle of chronic disability and suffering. Despite a wealth of evidence emphasizing the importance of FOM in cLBP, to date, no related neural correlates in patients were found and this therefore has initiated a debate about the precise contribution of fear in the FA model. In the current fMRI study, we applied a novel approach encompassing: (1) video clips of potentially harmful activities for the back as FOM inducing stimuli; and (2) the assessment of FOM in both, cLBP patients (N = 20) and age- and gender-matched pain-free subjects (N = 20). Derived from the FA model, we hypothesized that FOM differentially affects brain regions involved in fear processing in patients with cLBP compared to pain-free individuals due to the recurrent pain and subsequent avoidance behavior. The results of the whole brain voxel-wise regression analysis revealed that: (1) FOM positively correlated with brain activity in fear-related brain regions such as the amygdala and the insula; and (2) differential effects of FOM between patients with cLBP and pain-free subjects were found in the extended amygdala and in its connectivity to the anterior insula. Current findings support the FOM component of the FA model in cLBP.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Feb 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:17 Feb 2017 11:16
Last Modified:03 Aug 2017 17:47
Publisher:Frontiers Research Foundation
ISSN:1662-5161
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnhum.2016.00386
PubMed ID:27507941

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 641kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations